Saturday, December 3, 2022
HomeNanotechnologyAggregation-induced emission photosensitizer-based photodynamic remedy in most cancers: from chemical to medical...

Aggregation-induced emission photosensitizer-based photodynamic remedy in most cancers: from chemical to medical | Journal of Nanobiotechnology


  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. World most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71:209–49.

    PubMed 
    Article 

    Google Scholar
     

  • Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing significance of most cancers as a number one reason behind untimely dying worldwide. Most cancers. 2021;127:3029–30.

    PubMed 
    Article 

    Google Scholar
     

  • Xue T, Shen J, Shao Ok, Wang W, Wu B, He Y. Methods for tumor hypoxia imaging based mostly on aggregation-induced emission fluorogens. Chem Eur J. 2020;26:2521–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li X, Lovell JF, Yoon J, Chen X. Scientific improvement and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17:657–74.

    PubMed 
    Article 

    Google Scholar
     

  • Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic remedy overview: rules, photosensitizers, functions, and future instructions. Pharmaceutics. 2021;13:1332.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen H, Wan Y, Cui X, Li S, Lee CS. Current advances in hypoxia-overcoming technique of aggregation-induced emission photosensitizers for environment friendly photodynamic remedy. Adv Healthc Mater. 2021;10:2101607.

    CAS 
    Article 

    Google Scholar
     

  • Shen L, Zhou T, Fan Y, Chang X, Wang Y, Solar J, Xing L, Jiang H. Current progress in tumor photodynamic immunotherapy. Chin Chem Lett. 2020;31:1709–16.

    CAS 
    Article 

    Google Scholar
     

  • Jiang N, Zhou Z, Xiong W, Chen J, Shen J, Li R, Ye R. Tumor microenvironment triggered native oxygen era and photosensitizer launch from manganese dioxide mineralized albumin-ICG nanocomplex to amplify photodynamic immunotherapy efficacy. Chin Chem Lett. 2021;32:3948–53.

    CAS 
    Article 

    Google Scholar
     

  • Daniell MD, Hill JS. A historical past of photodynamic remedy. Aust N Z J Surg. 1991;61:340–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic remedy. Chem Soc Rev. 2016;45:6488–519.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu Ok, He C, Lin W. A Chlorin-based nanoscale steel–natural framework for photodynamic remedy of colon cancers. J Am Chem Soc. 2015;137:7600–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu L, Solar Y, Sugimoto Ok, Luo Z, Ishigaki Y, Pu Ok, Suzuki T, Chen HY, Ye D. Engineering of electrochromic supplies as activatable probes for molecular imaging and photodynamic remedy. J Am Chem Soc. 2018;140:16340–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adimoolam MG, Vijayalakshmi A, Nalam MR, Sunkara MV. Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic remedy. J Mater Chem B. 2017;5:9189–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Udartseva OO, Zhidkova OV, Ezdakova MI, Ogneva IV, Andreeva ER, Buravkova LB, Gollnick SO. Low-dose photodynamic remedy promotes angiogenic potential and will increase immunogenicity of human mesenchymal stromal cells. J Photochem Photobiol B. 2019;199: 111596.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dharmaraja AT. Function of reactive oxygen species (ROS) in therapeutics and drug resistance in most cancers and micro organism. J Med Chem. 2017;60:3221–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gunduz H, Kolemen S, Akkaya EU. Singlet oxygen probes: range in sign era mechanisms yields a bigger shade palette. Coord Chem Rev. 2021;429: 213641.

    CAS 
    Article 

    Google Scholar
     

  • Sadzuka Y, Tokutomi Ok, Iwasaki F, Sugiyama I, Hirano T, Konno H, Oku N, Sonobe T. The phototoxicity of photofrin was enhanced by PEGylated liposome in vitro. Most cancers Lett. 2006;241:42–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu J, Lin Y, Li H, Jin Q, Ji J. Zwitterionic stealth peptide-capped 5-aminolevulinic acid prodrug nanoparticles for focused photodynamic remedy. J Colloid Interface Sci. 2017;485:251–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Ok, Dong W, Miao Y, Liu Q, Qiu L, Lin J. Twin-targeted 5-aminolevulinic acid derivatives with glutathione depletion perform for enhanced photodynamic remedy. J Photochem Photobiol B. 2021;215: 112107.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haimov-Talmoud E, Harel Y, Schori H, Motiei M, Atkins A, Popovtzer R, Lellouche JP, Shefi O. Magnetic focusing on of mTHPC to enhance the selectivity and effectivity of photodynamic remedy. ACS Appl Mater Interfaces. 2019;11:45368–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pereira SP, Ayaru L, Hatfield ARW, Rogowska A, Bown S. Photodynamic remedy (PDT) of malignant biliary strictures utilizing meso-tetrahydroxyphenylchlorin (mTHPC). J Clin Oncol. 2005;23:4176–4176.

    Article 

    Google Scholar
     

  • Vigneswaran Ok, Boyd NH, Oh SY, Lallani S, Boucher A, Neill SG, Olson JJ, Learn RD. YAP/TAZ transcriptional coactivators create therapeutic vulnerability to verteporfin in EGFR-mutant glioblastoma. Clin Most cancers Res. 2021;27:1553–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Value G, Anastasiadou M, Sudhir S, Bouras A, Tsankova N, Hadjipanayis C. ITVT-02. Elucidating the pleiotropic results of verteporfin photodynamic remedy in preclinical glioblastoma fashions. NeuroOncology. 2021;23:vi228–vi228.


    Google Scholar
     

  • Zhao D, Tao W, Li S, Li L, Solar Y, Li G, Wang G, Wang Y, Lin B, Luo C, et al. Gentle-triggered dual-modality drug launch of self-assembled prodrug-nanoparticles for synergistic photodynamic and hypoxia-activated remedy. Nanoscale Horiz. 2020;5:886–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Ju J, Wang D, Yuan H, Hao L, Tan Y. Aggregation-induced emission for the visualization of the construction and properties of polymers. J Mater Chem C. 2021;9:11484–96.

    CAS 
    Article 

    Google Scholar
     

  • Wan Q, Zhang R, Zhuang Z, Li Y, Huang Y, Wang Z, Zhang W, Hou J, Tang BZ. Molecular engineering to spice up AIE-active free radical photogenerators and allow high-performance photodynamic remedy beneath hypoxia. Adv Funct Mater. 2020;30:2002057.

    CAS 
    Article 

    Google Scholar
     

  • Zhao H, Xu J, Feng C, Ren J, Bao L, Zhao Y, Tao W, Zhao Y, Yang X. Tailoring aggregation extent of photosensitizers to spice up phototherapy efficiency for eliciting systemic antitumor immunity. Adv Mater. 2022;34:2106390.

    CAS 
    Article 

    Google Scholar
     

  • Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001;1740-1

    Article 

    Google Scholar
     

  • Xue Ok, Dai Y, Zhao X, Zhang P, Ma F, Zhang D, Ji H, Wang X, Liang J, Qi Z. Increase extremely environment friendly singlet oxygen era and speed up most cancers cell apoptosis for photodynamic remedy by logically designed mitochondria focused near-infrared AIEgens. Sens Actuators B. 2022;358: 131471.

    CAS 
    Article 

    Google Scholar
     

  • Shi H, Pan X, Wang Y, Wang H, Liu W, Wang L, Chen Z. Limiting bond rotations by ring fusion: a novel molecular design technique to enhance photodynamic antibacterial efficacy of AIE photosensitizers. ACS Appl Mater Interfaces. 2022;14:17055–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi X, Sung SHP, Chau JHC, Li Y, Liu Z, Kwok RTK, Liu J, Xiao P, Zhang J, Liu B, et al. Killing G(+) or G(−) micro organism? the essential function of molecular cost in AIE-active photosensitizers. Small Strategies. 2020;4:2000046.

    CAS 
    Article 

    Google Scholar
     

  • Zhu W, Kang M, Wu Q, Zhang Z, Wu Y, Li C, Li Ok, Wang L, Wang D, Tang BZ. Zwitterionic AIEgens: rational molecular design for NIR-II fluorescence imaging-guided synergistic phototherapy. Adv Funct Mater. 2021;31:2007026.

    CAS 
    Article 

    Google Scholar
     

  • Gu X, Zhang X, Ma H, Jia S, Zhang P, Zhao Y, Liu Q, Wang J, Zheng X, Lam JWY, et al. Corannulene-incorporated AIE nanodots with extremely suppressed nonradiative decay for boosted most cancers phototheranostics in vivo. Adv Mater. 2018;30:1801065.

    Article 
    CAS 

    Google Scholar
     

  • Tavakkoli Yaraki M, Wu M, Middha E, Wu W, Daqiqeh Rezaei S, Liu B, Tan YN. Gold nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization in the direction of efficient image-guided photodynamic remedy. Nanomicro Lett. 2021;13:58.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang M, Kwok RTK, Wang J, Zhang H, Lam JWY, Li Y, Zhang P, Zou H, Gu X, Li F, Tang BZ. A multifunctional luminogen with aggregation-induced emission traits for selective imaging and photodynamic killing of each most cancers cells and Gram-positive micro organism. J Mater Chem B. 2018;6:3894–903.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alam P, Leung NLC, Zhang J, Kwok RTK, Lam JWY, Tang BZ. AIE-based Iuminescence probes for steel ion detection. Coord Chem Rev. 2021;429: 213693.

    CAS 
    Article 

    Google Scholar
     

  • Wan H, Xu Q, Gu P, Li H, Chen D, Li N, He J, Lu J. AIE-based fluorescent sensors for low focus poisonous ion detection in water. J Hazard Mater. 2021;403: 123656.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Z, Kwok RTK, Yu Y, Tang BZ, Ng KM. Delicate and particular detection of L-lactate utilizing an AIE-active fluorophore. ACS Appl Mater Interfaces. 2017;9:38153–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan N, Hu Y, Tang BZ, Wang W-X. Actual-time 3D framework tracing of extracellular polymeric substances by an AIE-active nanoprobe. ACS Sensors. 2021;6:4206–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Zhang Y, Wang J, Liang X-J. Aggregation-induced emission (AIE) fluorophores as imaging instruments to hint the organic destiny of nano-based drug supply methods. Adv Drug Deliv Rev. 2019;143:161–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jang SE, Qiu L, Cai X, Lee JWL, Zhang W, Tan E-Ok, Liu B, Zeng L. Aggregation-induced emission (AIE) nanoparticles labeled human embryonic stem cells (hESCs)-derived neurons for transplantation. Biomaterials. 2021;271: 120747.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li WJ, Zhang YP, Wang YC, Ma Y, Wang DY, Li H, Ye XY, Yin F, Li ZG. Nucleic acids induced peptide-based AIE nanoparticles for quick cell imaging. Chin Chem Lett. 2021;32:1571–4.

    CAS 
    Article 

    Google Scholar
     

  • Dai J, Xue H, Chen D, Lou X, Xia F, Wang S. Aggregation-induced emission luminogens for assisted most cancers surgical procedure. Coord Chem Rev. 2022;464: 214552.

    CAS 
    Article 

    Google Scholar
     

  • Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-polymer encapsulated aggregation-induced emission nanoparticles for tumor theranostics. Adv Healthc Mater. 2021;10:2101036.

    CAS 
    Article 

    Google Scholar
     

  • Cheng Y, Dai J, Solar C, Liu R, Zhai T, Lou X, Xia F. An intracellular H2O2-responsive AIEgen for the peroxidase-mediated selective imaging and inhibition of inflammatory cells. Angew Chem Int Ed. 2018;57:3123–7.

    CAS 
    Article 

    Google Scholar
     

  • Li J, Meng Z, Zhuang Z, Wang B, Dai J, Feng G, Lou X, Xia F, Zhao Z, Tang BZ. Efficient remedy of drug-resistant bacterial an infection by killing planktonic micro organism and destructing biofilms with cationic photosensitizer based mostly on phosphindole oxide. Small. 2022;18:2200743.

    CAS 
    Article 

    Google Scholar
     

  • Liu J, Liu X, Wu M, Qi G, Liu B. Engineering residing mitochondria with AIE photosensitizer for synergistic most cancers cell ablation. Nano Lett. 2020;20:7438–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Z, Zou H, Zhao Z, Zhang P, Shan GG, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Tuning organelle specificity and photodynamic remedy effectivity by molecular perform design. ACS Nano. 2019;13:11283–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi L, Hu F, Duan Y, Wu W, Dong J, Meng X, Zhu X, Liu B. Hybrid nanospheres to beat hypoxia and intrinsic oxidative resistance for enhanced photodynamic remedy. ACS Nano. 2020;14:2183–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu W, Mao D, Xu S, Panahandeh-Fard M, Duan Y, Hu F, Kong D, Liu B. Exact molecular engineering of photosensitizers with aggregation-induced emission over 800 nm for photodynamic remedy. Adv Funct Mater. 2019;29:1901791.

    CAS 
    Article 

    Google Scholar
     

  • Yuan Y, Feng G, Qin W, Tang BZ, Liu B. Focused and image-guided photodynamic most cancers remedy based mostly on natural nanoparticles with aggregation-induced emission traits. Chem Commun. 2014;50:8757–60.

    CAS 
    Article 

    Google Scholar
     

  • Hu F, Huang Y, Zhang G, Zhao R, Yang H, Zhang D. Focused bioimaging and photodynamic remedy of most cancers cells with an activatable crimson fluorescent bioprobe. Anal Chem. 2014;86:7987–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De Las HE, Sagristá ML, Agut M, Nonell S. Photosensitive EGFR-targeted nanocarriers for mixed photodynamic and native chemotherapy. Pharmaceutics. 2022;14:405.

    Article 
    CAS 

    Google Scholar
     

  • Yang G, Tian J, Chen C, Jiang D, Xue Y, Wang C, Gao Y, Zhang W. An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy in opposition to hypoxic tumors. Chem Sci. 2019;10:5766–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei D, Chen Y, Huang Y, Li P, Zhao Y, Zhang X, Wan J, Yin X, Liu T, Yin J, et al. NIR-light triggered dual-cascade focusing on core-shell nanoparticles enhanced photodynamic remedy and immunotherapy. Nano Right this moment. 2021;41: 101288.

    CAS 
    Article 

    Google Scholar
     

  • Dai J, Dong X, Liu R, Chen B, Dong X, Wang Q, Hu J-J, Xia F, Lou X. A peptide-AIEgen nanocomposite mediated entire most cancers immunity cycle-cascade amplification for improved immunotherapy of tumor. Biomaterials. 2022;285: 121528.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu J, Zheng Q, Cheng X, Hu S, Zhang C, Zhou X, Solar P, Wang W, Su Z, Zou T, et al. Chemo-photodynamic remedy with light-triggered disassembly of theranostic nanoplatform together with checkpoint blockade for immunotherapy of hepatocellular carcinoma. J Nanobiotechnol. 2021;19:355.

    CAS 
    Article 

    Google Scholar
     

  • Liu J, Hu F, Wu M, Tian L, Gong F, Zhong X, Chen M, Liu Z, Liu B. Bioorthogonal coordination polymer nanoparticles with aggregation-induced emission for deep tumor-penetrating radio- and radiodynamic remedy. Adv Mater. 2021;33:2007888.

    CAS 
    Article 

    Google Scholar
     

  • Dai J, Hu J-J, Dong X, Chen B, Dong X, Liu R, Xia F, Lou X. Deep downregulation of PD-L1 by caged peptide-conjugated AIEgen/miR-140 nanoparticles for enhanced immunotherapy. Angew Chem Int Ed. 2022;61: e202117798.

    CAS 

    Google Scholar
     

  • Van Straten D, Mashayekhi V, De Bruijn HS, Oliveira S, Robinson DJ. Oncologic photodynamic remedy: primary rules, present medical standing and future instructions. Cancers. 2017;9:19.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Current methods to develop revolutionary photosensitizers for enhanced photodynamic remedy. Chem Rev. 2021;121:13454–619.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu S, Yuan Y, Cai X, Zhang CJ, Hu F, Liang J, Zhang G, Zhang D, Liu B. Tuning the singlet-triplet power hole: a novel strategy to environment friendly photosensitizers with aggregation-induced emission (AIE) traits. Chem Sci. 2015;6:5824–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen H, Li S, Wu M, Huang Z, Lee CS, Liu B. Membrane-anchoring photosensitizer with aggregation-induced emission traits for combating multidrug-resistant micro organism. Angew Chem Int Ed. 2020;59:632–6.

    CAS 
    Article 

    Google Scholar
     

  • Zha M, Yang G, Li Y, Zhang C, Li B, Li Ok. Current advances in AIEgen-based photodynamic remedy and immunotherapy. Adv Healthc Mater. 2021;10:2101066.

    CAS 
    Article 

    Google Scholar
     

  • Tu Y, Liu J, Zhang H, Peng Q, Lam JWY, Tang BZ. Restriction of entry to the darkish state: a brand new mechanistic mannequin for heteroatom-containing AIE methods. Angew Chem Int Ed. 2019;58:14911–4.

    CAS 
    Article 

    Google Scholar
     

  • Tu Y, Zhao Z, Lam JWY, Tang BZ. Mechanistic connotations of restriction of intramolecular motions (RIM). Natl Sci Rev. 2021;8:nwaa260.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dai J, Wu X, Ding S, Lou X, Xia F, Wang S, Hong Y. Aggregation-induced emission photosensitizers: from molecular design to photodynamic remedy. J Med Chem. 2020;63:1996–2012.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu WB, Mao D, Xu SD, Kenry R, Hu F, Li XQ, Kong DL, Liu B. Polymerization-enhanced photosensitization. Chem. 2018;4:1937–51.

    CAS 
    Article 

    Google Scholar
     

  • Chen Y, Ai W, Guo X, Li Y, Ma Y, Chen L, Zhang H, Wang T, Zhang X, Wang Z. Mitochondria-targeted polydopamine nanocomposite with AIE photosensitizer for image-guided photodynamic and photothermal tumor ablation. Small. 2019;15:1902352.

    Article 
    CAS 

    Google Scholar
     

  • Li L, Yuan G, Qi Q, Lv C, Liang J, Li H, Cao L, Zhang X, Wang S, Cheng Y, He H. Synthesis of tetraphenylethene-based D-A conjugated molecules with near-infrared AIE options, and their software in photodynamic remedy. J Mater Chem B. 2022;10:3550–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang F, Liu Y, Yang B, Wen G, Liu B. Close to-infrared AIEgens for lipid droplets imaging in corpus adiposum or trachea of Locusta migratoria and its software in photodynamic remedy. Sens Actuators B. 2020;322: 128589.

    CAS 
    Article 

    Google Scholar
     

  • Yang M, Deng J, Su H, Gu S, Zhang J, Zhong A, Wu F. Small natural molecule-based nanoparticles with crimson/near-infrared aggregation-induced emission for bioimaging and PDT/PTT synergistic remedy. Mate Chem Entrance. 2021;5:406–17.

    CAS 
    Article 

    Google Scholar
     

  • Ding GY, Tong J, Gong JY, Wang Z, Su ZM, Liu L, Han X, Wang J, Zhang L, Wang X, et al. Molecular engineering to attain AIE-active photosensitizer with NIR emission and speedy ROS era effectivity. J Mater Chem B. 2022;10:5272-8.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Z, Wang C, Gan Q, Cao Y, Yuan H, Hua D. Donor–acceptor-type conjugated polymer-based multicolored drug carriers with tunable aggregation-induced emission habits for self-illuminating most cancers remedy. ACS Appl Mater Interfaces. 2019;11:41853–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gon M, Tanaka Ok, Chujo Y. A extremely environment friendly near-infrared-emissive copolymer with a N=N double-bond π-conjugated system based mostly on a fused azobenzene-boron advanced. Angew Chem Int Ed. 2018;57:6546–51.

    CAS 
    Article 

    Google Scholar
     

  • Khan IM, Niazi S, Iqbal Khan MK, Pasha I, Mohsin A, Haider J, Iqbal MW, Rehman A, Yue L, Wang Z. Current advances and views of aggregation-induced emission as an rising platform for detection and bioimaging. TrAC Tendencies Anal Chem. 2019;119: 115637.

    CAS 
    Article 

    Google Scholar
     

  • Yang Z, Zhang Z, Solar Y, Lei Z, Wang D, Ma H, Tang BZ. Incorporating spin-orbit coupling promoted purposeful group into an enhanced electron D-A system: a helpful designing idea for fabricating environment friendly photosensitizer and imaging-guided photodynamic remedy. Biomaterials. 2021;275: 120934.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Zhang R, Wan Q, Hu R, Ma Y, Wang Z, Hou J, Zhang W, Tang BZ. Malicious program-like nano-AIE aggregates based mostly on homologous focusing on technique and their photodynamic remedy in anticancer software. Adv Sci. 2021;8:2102561.

    CAS 
    Article 

    Google Scholar
     

  • You X, Ma H, Wang Y, Zhang G, Peng Q, Liu L, Wang S, Zhang D. Pyridinium-substituted tetraphenylethylene entailing alkyne moiety: enhancement of photosensitizing effectivity and antimicrobial exercise. Chem Asian J. 2017;12:1013–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang L, Li Y, Che W, Zhu D, Li G, Xie Z, Tune N, Liu S, Tang BZ, Liu X, et al. AIE multinuclear Ir(III) complexes for biocompatible natural nanoparticles with extremely enhanced photodynamic efficiency. Adv Sci. 2019;6:1802050.

    Article 
    CAS 

    Google Scholar
     

  • Cai X, Wang Ok-N, Ma W, Yang Y, Chen G, Fu H, Cui C, Yu Z, Wang X. Multifunctional AIE iridium (III) photosensitizer nanoparticles for two-photon-activated imaging and mitochondria focusing on photodynamic remedy. J Nanobiotechnol. 2021;19:254.

    CAS 
    Article 

    Google Scholar
     

  • Li X, Kwon N, Guo T, Liu Z, Yoon J. Modern methods for hypoxic-tumor photodynamic remedy. Angew Chem Int Ed. 2018;57:11522–31.

    CAS 
    Article 

    Google Scholar
     

  • Kang M, Zhang Z, Xu W, Wen H, Zhu W, Wu Q, Wu H, Gong J, Wang Z, Wang D, Tang BZ. Good metal used within the blade: well-tailored type-I photosensitizers with aggregation-induced emission traits for exact nuclear focusing on photodynamic remedy. Adv Sci. 2021;8:2100524.

    CAS 
    Article 

    Google Scholar
     

  • Zhuang Z, Dai J, Yu M, Li J, Shen P, Hu R, Lou X, Zhao Z, Tang BZ. Sort I photosensitizers based mostly on phosphindole oxide for photodynamic remedy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chem Sci. 2020;11:3405–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo J, Dai J, Peng X, Wang Q, Wang S, Lou X, Xia F, Zhao Z, Tang BZ. 9,10-Phenanthrenequinone: a promising kernel to develop multifunctional antitumor methods for environment friendly kind I photodynamic and photothermal synergistic remedy. ACS Nano. 2021;15:20042–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu S, Wang B, Yu Y, Liu Y, Zhuang Z, Zhao Z, Feng G, Qin A, Tang BZ. Cationization-enhanced kind I and sort II ROS era for photodynamic therapy of drug-resistant micro organism. ACS Nano. 2022;16:9130-41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang G, Ni J-S, Li Y, Zha M, Tu Y, Li Ok. Acceptor engineering for optimized ROS era facilitates reprogramming macrophages to M1 phenotype in photodynamic immunotherapy. Angew Chem Int Ed. 2021;60:5386–93.

    CAS 
    Article 

    Google Scholar
     

  • Zhao X, Dai Y, Ma F, Misal S, Hasrat Ok, Zhu H, Qi Z. Molecular engineering to speed up most cancers cell discrimination and increase AIE-active kind I photosensitizer for photodynamic remedy beneath hypoxia. Chem Eng J. 2021;410: 128133.

    CAS 
    Article 

    Google Scholar
     

  • Liu Z, Wang Q, Qiu W, Lyu Y, Zhu Z, Zhao X, Zhu W-H. AIE-active luminogens as extremely environment friendly free-radical ROS photogenerator for image-guided photodynamic remedy. Chem Sci. 2022;13:3599–608.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu R, Qin A, Tang BZ. AIE polymers: synthesis and functions. Prog Polym Sci. 2020;100: 101176.

    CAS 
    Article 

    Google Scholar
     

  • Hu R, Leung NLC, Tang BZ. AIE macromolecules: syntheses, buildings and functionalities. Chem Soc Rev. 2014;43:4494–562.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qin A, Lam JWY, Tang BZ. Luminogenic polymers with aggregation-induced emission traits. Prog Polym Sci. 2012;37:182–209.

    CAS 
    Article 

    Google Scholar
     

  • Liu S, Zhang H, Li Y, Liu J, Du L, Chen M, Kwok RTK, Lam JWY, Phillips DL, Tang BZ. Methods to boost the photosensitization: polymerization and the donor–acceptor even–odd impact. Angew Chem Int Ed. 2018;57:15189–93.

    CAS 
    Article 

    Google Scholar
     

  • Xie H, Hu W, Zhang F, Zhao C, Peng T, Zhu C, Xu J. AIE-active polyelectrolyte based mostly photosensitizers: the results of construction on antibiotic-resistant bacterial sensing and killing and pollutant decomposition. J Mater Chem B. 2021;9:5309–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Solar Y, Ran J, Yang H, Xiao S, Yang J, Yang C, Wang H, Liu Y. Utilization of nonradiative excited-state dissipation for promoted phototheranostics based mostly on an AIE-active kind I ROS generator. ACS Appl Mater Interfaces. 2022;14:225–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou Y, Jing S, Liu S, Shen X, Cai L, Zhu C, Zhao Y, Pang M. Double-activation of mitochondrial permeability transition pore opening by way of calcium overload and reactive oxygen species for most cancers remedy. J Nanobiotechnol. 2022;20:188.

    CAS 
    Article 

    Google Scholar
     

  • Dai J, Chen Z, Wang S, Xia F, Lou X. Erythrocyte membrane-camouflaged nanoparticles as efficient and biocompatible platform: both autologous or allogeneic erythrocyte-derived. Mater Right this moment Bio. 2022;15: 100279.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dai J, Wu M, Wang Q, Ding S, Dong X, Xue L, Zhu Q, Zhou J, Xia F, Wang S, Hong Y. Crimson blood cell membrane-camouflaged nanoparticles loaded with AIEgen and Poly(I : C) for enhanced tumoral photodynamic-immunotherapy. Natl Sci Rev. 2021;8:39.

    Article 
    CAS 

    Google Scholar
     

  • Yang J, Dai J, Wang Q, Cheng Y, Guo J, Zhao Z, Hong Y, Lou X, Xia F. Tumor-triggered disassembly of a multiple-agent-therapy probe for environment friendly mobile internalization. Angew Chem Int Ed. 2020;59:20405–10.

    CAS 
    Article 

    Google Scholar
     

  • Zou J, Chen S, Li Y, Zeng L, Lian G, Li J, Chen S, Huang Ok, Chen Y. Nanoparticles modified by triple single chain antibodies for MRI examination and focused remedy in pancreatic most cancers. Nanoscale. 2020;12:4473–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Camardo A, Carney S, Ramamurthi A. Assessing the focusing on and destiny of cathepsin okay antibody-modified nanoparticles in a rat belly aortic aneurysm mannequin. Acta Biomater. 2020;112:225–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Wang X, Yang F, Liu Y, Meng L, Pang Y, Zhang M, Chen F, Pan C, Lin S, et al. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. Nano Right this moment. 2021;40: 101280.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takahashi M, Yoshino T, Matsunaga T. Floor modification of magnetic nanoparticles utilizing asparagines-serine polypeptide designed to manage interactions with cell surfaces. Biomaterials. 2010;31:4952–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solar C, Du Ok, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Lee D, Ellenbogen RG, Ratner B, Zhang M. PEG-mediated synthesis of extremely dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and performance in vivo. ACS Nano. 2010;4:2402–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang S, Li Ok, Chen Y, Chen H, Ma M, Feng J, Zhao Q, Shi J. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and extremely environment friendly photothermal regression of tumor. Biomaterials. 2015;39:206–17.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Mao L, Huang H, Hu D, Ma H, Tian M, Zhang X, Wei Y. A near-infrared bioprobe with aggregation-induced emission characteristic for in vitro photodynamic remedy. Dyes Pigm. 2021;194: 109521.

    CAS 
    Article 

    Google Scholar
     

  • Wen Q, Zhang Y, Li C, Ling S, Yang X, Chen G, Yang Y, Wang Q. NIR-II fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis. Angew Chem Int Ed. 2019;58:11001–6.

    CAS 
    Article 

    Google Scholar
     

  • Tian C, Qian W, Shao X, Xie Z, Cheng X, Liu S, Cheng Q, Liu B, Wang X. Plasmonic nanoparticles with quantitatively managed bioconjugation for photoacoustic imaging of reside most cancers cells. Adv Sci. 2016;3:1600237.

    Article 
    CAS 

    Google Scholar
     

  • Wan G, Cheng Y, Tune J, Chen Q, Chen B, Liu Y, Ji S, Chen H, Wang Y. Nucleus-targeting near-infrared nanoparticles based mostly on TAT peptide-conjugated IR780 for photo-chemotherapy of breast most cancers. Chem Eng J. 2020;380: 122458.

    CAS 
    Article 

    Google Scholar
     

  • Li N, Solar Q, Yu Z, Gao X, Pan W, Wan X, Tang B. Nuclear-targeted photothermal remedy prevents most cancers recurrence with near-infrared triggered copper sulfide nanoparticles. ACS Nano. 2018;12:5197–206.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee MX, Tan DSP. Weekly versus 3-weekly paclitaxel together with carboplatin in superior ovarian most cancers: which is the optimum adjuvant chemotherapy routine? J Gynecol Oncol. 2018;29: e96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nimmagadda S, Penet MF. Ovarian most cancers focused theranostics. Entrance Oncol. 2020;9:1537.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez Acevedo M, Villagra A, Chiappinelli KB. Epigenetic remedy for ovarian most cancers: promise and progress. Clin Epigenet. 2019;11:7.

    Article 

    Google Scholar
     

  • Mir Y, Elrington SA, Hasan T. A brand new nanoconstruct for epidermal development issue receptor-targeted photo-immunotherapy of ovarian most cancers. Nanomedicine. 2013;9:1114–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dai J, Li Y, Lengthy Z, Jiang R, Zhuang Z, Wang Z, Zhao Z, Lou X, Xia F, Tang BZ. Environment friendly near-infrared photosensitizer with aggregation-induced emission for imaging-guided photodynamic remedy in a number of xenograft tumor fashions. ACS Nano. 2020;14:854–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dai J, Cheng Y, Wu J, Wang Q, Wang W, Yang J, Zhao Z, Lou X, Xia F, Wang S, Tang BZ. Modular peptide probe for pre/intra/postoperative therapeutic to cut back recurrence in ovarian most cancers. ACS Nano. 2020;14:14698–714.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Li X, Zhao Y, Zhang T, Xing D. Mitochondria-specific brokers for photodynamic most cancers remedy: a key determinant to spice up the efficacy. Adv Healthc Mater. 2021;10:2001240.

    CAS 
    Article 

    Google Scholar
     

  • Deng H, Zhou Z, Yang W, Lin LS, Wang S, Niu G, Tune J, Chen X. Endoplasmic reticulum focusing on to amplify immunogenic cell dying for most cancers immunotherapy. Nano Lett. 2020;20:1928–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dyer O. Cervical most cancers: deaths enhance as HPV vaccine is underused, says WHO. BMJ. 2019;364: l580.

    PubMed 
    Article 

    Google Scholar
     

  • Lecavalier Barsoum M, Chaudary N, Han Ok, Koritzinsky M, Hill R, Milosevic M. Concentrating on the CXCL12/CXCR4 pathway and myeloid cells to enhance radiation therapy of regionally superior cervical most cancers. Int J Most cancers. 2018;143:1017–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Inada NM, Buzzá HH, Leite MF, Kurachi C, Trujillo JR, de Castro CA, Carbinatto FM, Lombardi W, Bagnato VS. Long run effectiveness of photodynamic remedy for CIN therapy. Prescription drugs. 2019;12:107.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hillemanns P, Petry KU, Soergel P, Collinet P, Ardaens Ok, Gallwas J, Luyten A, Dannecker C. Efficacy and security of hexaminolevulinate photodynamic remedy in sufferers with low-grade cervical intraepithelial neoplasia. Lasers Surg Med. 2014;46:456–61.

    PubMed 
    Article 

    Google Scholar
     

  • Liu X-Y, Yang JB, Wu CY, Tang Q, Lu ZL, Lin L. [12]aneN3-Conjugated AIEgens with two-photon imaging properties for synergistic gene/photodynamic remedy in vitro and in vivo. J Mater Chem B. 2022;10:945–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang F, Liu JY, Wu CY, Liang YX, Lu ZL, Ding AX, Xu MD. Two-photon near-infrared AIE luminogens as multifunctional gene carriers for most cancers theranostics. ACS Appl Mater Interfaces. 2021;13:23384–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zou H, Zhang J, Wu C, He B, Hu Y, Sung HHY, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Making aggregation-induced emission luminogen extra helpful by gold: enhancing anticancer efficacy by suppressing thioredoxin reductase exercise. ACS Nano. 2021;15:9176–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wen D, Zhang X, Ding L, Wen H, Liu W, Zhang C, Wang B, Li L, Diao H. Folic acid functionalized aggregation-induced emission nanoparticles for tumor cell focused imaging and photodynamic remedy. RSC Adv. 2022;12:4484–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang M, Kwok RTK, Li X, Gui C, Lam JWY, Qu J, Tang BZ. A easy mitochondrial focusing on AIEgen for image-guided two-photon excited photodynamic remedy. J Mater Chem B. 2018;6:2557–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang KN, Liu LY, Mao D, Hou MX, Tan CP, Mao ZW, Liu B. A nuclear-targeted AIE photosensitizer for enzyme inhibition and photosensitization in most cancers cell ablation. Angew Chem Int Ed. 2022;61: e202114600.

    CAS 

    Google Scholar
     

  • Zhang L, Che W, Yang Z, Liu X, Liu S, Xie Z, Zhu D, Su Z, Tang BZ, Bryce MR. Vibrant crimson aggregation-induced emission nanoparticles for multifunctional functions in most cancers remedy. Chem Sci. 2020;11:2369–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ. The regulation and performance of lactate dehydrogenase A: therapeutic potential in mind tumor. Mind Pathol. 2016;26:3–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gutmann DH, Kettenmann H. Microglia/Mind macrophages as central drivers of mind tumor pathobiology. Neuron. 2019;104:442–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ladomersky E, Scholtens DM, Kocherginsky M, Hibler EA, Bartom ET, Otto-Meyer S, Zhai L, Lauing KL, Choi J, Sosman JA, et al. The coincidence between growing age, immunosuppression, and the incidence of sufferers with glioblastoma. Entrance Pharmacol. 2019;10:200.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MF-R, Ahmed H, Rahman N, Nainu F, Wahyudin E, et al. Multidrug resistance in most cancers: understanding molecular mechanisms, immunoprevention and therapeutic approaches. Entrance Oncol. 2022;12:891652.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms related to altered intracellular distribution of anticancer brokers. Pharmacol Ther. 2000;85:217–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in most cancers chemotherapeutics: mechanisms and lab approaches. Most cancers Lett. 2014;347:159–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for most cancers remedy based mostly on chemotherapy. Molecules. 2018;23:826.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee YT, Tan YJ, Oon CE. Molecular focused remedy: treating most cancers with specificity. Eur J Pharmacol. 2018;834:188–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wilkes GM. Focused remedy: attacking most cancers with molecular and immunological focused brokers. Asia Pac J Clin Onco. 2018;5:137–55.

    Article 

    Google Scholar
     

  • Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for most cancers remedy: present progress and views. J Hematol Oncol. 2021;14:85.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sheng Z, Guo B, Hu D, Xu S, Wu W, Liew WH, Yao Ok, Jiang J, Liu C, Zheng H, Liu B. Vibrant aggregation-induced-emission dots for focused synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic mind tumors. Adv Mater. 2018;30:1800766.

    Article 
    CAS 

    Google Scholar
     

  • Gao D, Li Y, Wu Y, Liu Y, Hu D, Liang S, Liao J, Pan M, Zhang P, Li Ok, et al. Albumin-consolidated AIEgens for enhancing glioma and cerebrovascular NIR-II fluorescence imaging. ACS Appl Mater Interfaces. 2022. https://doi.org/10.1021/acsami.1c22700.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: an rising therapy possibility for strong tumors. Adv Sci. 2017;4:1600106.

    Article 
    CAS 

    Google Scholar
     

  • Lim C, Moon J, Sim T, Received WR, Lee ES, Youn YS, Oh KT. A nano-complex system to beat antagonistic photo-chemo mixture most cancers remedy. J Management Launch. 2019;295:164–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Deng Y, Tian X, Ke H, Guo M, Zhu A, Yang T, Guo Z, Ge Z, Yang X, Chen H. Multipronged design of light-triggered nanoparticles to beat cisplatin resistance for environment friendly ablation of resistant tumor. ACS Nano. 2015;9:9626–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo B, Wu M, Shi Q, Dai T, Xu S, Jiang J, Liu B. All-in-one molecular aggregation-induced emission theranostics: fluorescence picture guided and mitochondria focused chemo- and photodynamic most cancers cell ablation. Chem Mater. 2020;32:4681–91.

    CAS 
    Article 

    Google Scholar
     

  • Fortin D. The blood-brain barrier: its affect within the therapy of mind tumors metastases. Curr Most cancers Drug Targets. 2012;12:247–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang J, Wang Q, Yu Q, Qiu Y, Mei L, Wan D, Wang X, Li M, He Q. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug supply. Acta Biomater. 2019;83:379–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuang Y, An S, Guo Y, Huang S, Shao Ok, Liu Y, Li J, Ma H, Jiang C. T7 peptide-functionalized nanoparticles using RNA interference for glioma twin focusing on. Int J Pharm. 2013;454:11–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu Ok, Zhou D, Rao L, Wang P, Xiang C, Chen F. A multifunctional AIE nanoprobe as a drug supply bioimaging and most cancers therapy system. Entrance Bioeng Biotechnol. 2021;9:766470.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Zhang J, Meng F, Zhong Z. Apolipoprotein E peptide-directed chimeric polymersomes mediate an ultrahigh-efficiency focused protein remedy for glioblastoma. ACS Nano. 2018;12:11070–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang J, Liu Y, Morsch M, Lu Y, Shangguan P, Han L, Wang Z, Chen X, Tune C, Liu S, et al. Mind-targeted aggregation-induced-emission nanoparticles with near-infrared imaging at 1550 nm boosts orthotopic glioblastoma theranostics. Adv Mater. 2022;34:2106082.

    CAS 
    Article 

    Google Scholar
     

  • Deng G, Peng X, Solar Z, Zheng W, Yu J, Du L, Chen H, Gong P, Zhang P, Cai L, Tang BZ. Pure-killer-cell-inspired nanorobots with aggregation-induced emission traits for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano. 2020;14:11452–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Whiteman DC, Inexperienced AC, Olsen CM. The rising burden of invasive melanoma: projections of incidence charges and numbers of latest circumstances in six vulnerable populations via 2031. J Make investments Dermatol. 2016;136:1161–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Vries E, Willem CJ. Cutaneous malignant melanoma in Europe. Eur J Most cancers. 2004;40:2355–66.

    PubMed 
    Article 

    Google Scholar
     

  • Blume-Peytavi U. ninth pores and skin academy symposium: constructing bridges in dermatology chair’s introduction. Dermatol Ther. 2017;7:1–3.

    Article 

    Google Scholar
     

  • Juszczak AM, Wöelfle U, Končić MZ, Tomczyk M. Pores and skin most cancers, together with associated pathways and remedy and the function of luteolin derivatives as potential therapeutics. Med Res Rev. 2022;42:1423-62.

    Article 

    Google Scholar
     

  • Su MY, Fisher DE. Immunotherapy within the precision medication period: melanoma and past. PLoS Med. 2016;13: e1002196.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guadagnolo BA, Zagars GK. Adjuvant radiation remedy for high-risk nodal metastases from cutaneous melanoma. Lancet Oncol. 2009;10:409–16.

    PubMed 
    Article 

    Google Scholar
     

  • Zheng Z, Liu H, Zhai S, Zhang H, Shan G, Kwok RTK, Ma C, Sung HHY, Williams ID, Lam JWY, et al. Extremely environment friendly singlet oxygen era, two-photon photodynamic remedy and melanoma ablation by rationally designed mitochondria-specific near-infrared AIEgens. Chem Sci. 2020;11:2494–503.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Y, Tang R, Liu X, Gong J, Zhao Z, Sheng Z, Zhang J, Li X, Niu G, Kwok RTK, et al. Vibrant aggregation-induced emission nanoparticles for two-photon imaging and localized compound remedy of cancers. ACS Nano. 2020;14:16840–53.

    CAS 
    Article 

    Google Scholar
     

  • Kashyap MP, Sinha R, Mukhtar MS, Athar M. Epigenetic regulation within the pathogenesis of non-melanoma pores and skin most cancers. Semin Most cancers Biol. 2020;83:36-56.

    Article 
    PubMed 

    Google Scholar
     

  • Wan J, Dai H, Zhang X, Liu S, Lin Y, Somani AK, Xie J, Han J. Distinct transcriptomic landscapes of cutaneous basal cell carcinomas and squamous cell carcinomas. Genes Dis. 2021;8:181–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang J, Zhu X, Zhang J, Wang H, Liu G, Bu Y, Yu J, Tian Y, Zhou H. AIE-based theranostic agent: in situ monitoring mitophagy previous to late apoptosis to information the photodynamic remedy. ACS Appl Mater Interfaces. 2020;12:1988–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mederos N, Friedlaender A, Peters S, Addeo A. Gender-specific points of epidemiology, molecular genetics and consequence: lung most cancers. ESMO Open. 2020;5: e000796.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maconachie R, Mercer T, Navani N, McVeigh G. Lung most cancers: analysis and administration: abstract of up to date NICE steering. BMJ. 2019;364: l1049.

    PubMed 
    Article 

    Google Scholar
     

  • Hurmuz P, Cengiz M, Ozyigit G, Akkas EA, Yuce D, Yilmaz MT, Yildiz D, Zorlu F, Akyol F. Stereotactic physique radiotherapy in sufferers with early-stage non-small cell lung most cancers: does beam-on time matter? Japanese J Clin Oncol. 2020;50:1182–7.

    Article 

    Google Scholar
     

  • Faehling M, Witte H, Sebastian M, Ulmer M, Sätzler R, Steinestel Ok, Brückl WM, Evers G, Büschenfelde CM, Bleckmann A. Actual-world multicentre evaluation of neoadjuvant immunotherapy and chemotherapy in localized or oligometastatic non-small cell lung most cancers (KOMPASSneoOP). Ther Adv Med Oncol. 2022;14:17588359221085332.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu X, Liu S, Han M, Yang X, Solar Ok, Wang H, Mu H, Du Y, Wang A, Ni L, Zhang C. Afatinib-loaded immunoliposomes functionalized with cetuximab: A novel technique focusing on the epidermal development issue receptor for therapy of non-small-cell lung most cancers. Int J Pharm. 2019;560:126–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao M, Su H, Lin G, Li S, Yu X, Qin A, Zhao Z, Zhang Z, Tang BZ. Focused imaging of EGFR overexpressed most cancers cells by brightly fluorescent nanoparticles conjugated with cetuximab. Nanoscale. 2016;8:15027–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su H, Deng Z, Liu Y, Zhao Y, Liu H, Zhao Z, Tang BZ. A brightly crimson emissive AIEgen and its antibody conjugated nanoparticles for most cancers cell focusing on imaging. Mater Chem Entrance. 2022;6:1317–23.

    CAS 
    Article 

    Google Scholar
     

  • Wang C, Zhao X, Jiang H, Wang J, Zhong W, Xue Ok, Zhu C. Transporting mitochondrion-targeting photosensitizers into most cancers cells by low-density lipoproteins for fluorescence-feedback photodynamic remedy. Nanoscale. 2021;13:1195–205.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arnesano F, Nardella MI, Natile G. Platinum medication, copper transporters and copper chelators. Coord Chem Rev. 2018;374:254–60.

    CAS 
    Article 

    Google Scholar
     

  • Shim MK, Moon Y, Yang S, Kim J, Cho H, Lim S, Yoon HY, Seong JK, Kim Ok. Most cancers-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant most cancers remedy. Biomaterials. 2020;261: 120347.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su Y, Lin H, Tu Y, Wang MM, Zhang GD, Yang J, Liu HK, Su Z. Combating metallodrug resistance via alteration of drug metabolism and blockage of autophagic flux by mitochondria-targeting AIEgens. Chem Sci. 2022;13:1428–39.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deng J, Yang M, Li C, Liu G, Solar Q, Luo X, Wu F. Single molecular-based nanoparticles with aggregation-induced emission traits for fluorescence imaging and environment friendly most cancers phototherapy. Dyes Pigm. 2021;187: 109130.

    CAS 
    Article 

    Google Scholar
     

  • Zheng Y, Lu H, Jiang Z, Guan Y, Zou J, Wang X, Cheng R, Gao H. Low-power white gentle triggered AIE polymer nanoparticles with excessive ROS quantum yield for mitochondria-targeted and image-guided photodynamic remedy. J Mater Chem B. 2017;5:6277–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao YF, Chen WC, Chen JX, Lu G, Tian S, Cui X, Zhang Z, Chen H, Wan Y, Li S, Lee CS. Amplifying free radical era of AIE photosensitizer with small singlet–triplet splitting for hypoxia-overcoming photodynamic remedy. ACS Appl Mater Interfaces. 2022;14:5112–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao S, Xia Y, Shao J, Guo B, Dong Y, Pijpers IAB, Zhong Z, Meng F, Abdelmohsen LKEA, Williams DS, van Hest JCM. Biodegradable polymersomes with construction inherent fluorescence and focusing on capability for enhanced photo-dynamic remedy. Angew Chem Int Ed. 2021;60:17629–37.

    CAS 
    Article 

    Google Scholar
     

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2022. Ca-Most cancers J Clins. 2022;72:7–33.

    Article 

    Google Scholar
     

  • Yu J, Mu Q, Fung M, Xu X, Zhu L, Ho RJY. Challenges and alternatives in metastatic breast most cancers remedies: Nano-drug mixtures delivered preferentially to metastatic cells might improve therapeutic response. Pharmacol Ther. 2022;236: 108108.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Yu Y, Chen Ok, Fu T, Yao H. Locoregional surgical procedure of the first tumor in stage IV breast most cancers sufferers. J Clin Oncol. 2017;35:566–566.

    Article 

    Google Scholar
     

  • Poleszczuk J, Luddy Ok, Chen L, Lee JK, Harrison LB, Czerniecki BJ, Soliman H, Enderling H. Neoadjuvant radiotherapy of early-stage breast most cancers and long-term disease-free survival. Breast Most cancers Res. 2017;19:75.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Barinoff J, Schmidt M, Schneeweiss A, Schoenegg W, Thill M, Keitel S, Lattrich CR, Hinke A, Kutscheidt A, Jackisch C. Main metastatic breast most cancers within the period of focused remedy—prognostic affect and the function of breast tumour surgical procedure. Eur J Most cancers. 2017;83:116–24.

    PubMed 
    Article 

    Google Scholar
     

  • Jyotsana N, Zhang Z, Himmel Lauren E, Yu F, King Michael R. Minimal dosing of leukocyte focusing on TRAIL decreases triple-negative breast most cancers metastasis following tumor resection. Sci Adv. 2019;5:4197.

    Article 
    CAS 

    Google Scholar
     

  • Rios Garcia M, Steinbauer B, Srivastava Ok, Singhal M, Mattijssen F, Maida A, Christian S, Hess Stumpp H, Augustin HG, Müller Decker Ok, et al. Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast most cancers metastasis and recurrence. Cell Metab. 2017;26:842-855.e845.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang R, Dai J, Dong X, Wang Q, Meng Z, Guo J, Yu Y, Wang S, Xia F, Zhao Z, et al. Enhancing image-guided surgical and immunological tumor therapy efficacy by photothermal and photodynamic therapies based mostly on a multifunctional NIR AIEgen. Adv Mater. 2021;33:2101158.

    CAS 
    Article 

    Google Scholar
     

  • Su Y, Tu Y, Lin H, Wang MM, Zhang GD, Yang J, Liu HK, Su Z. Mitochondria-targeted Pt(IV) prodrugs conjugated with an aggregation-induced emission luminogen in opposition to breast most cancers cells by twin modulation of apoptosis and autophagy inhibition. J Inorg Biochem. 2022;226: 111653.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu L, Wang X, Wang LJ, Guo L, Li Y, Bai B, Fu F, Lu H, Zhao X. One-for-all phototheranostic agent based mostly on aggregation-induced emission traits for multimodal imaging-guided synergistic photodynamic/photothermal most cancers remedy. ACS Appl Mater Interfaces. 2021;13:19668–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Gong N, Li Y, Lu Q, Wang X, Li J. Atomic-level nanorings (A-NRs) therapeutic agent for photoacoustic imaging and photothermal/photodynamic remedy of most cancers. J Am Chem Soc. 2020;142:1735–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao X, Lengthy S, Li M, Cao J, Li Y, Guo L, Solar W, Du J, Fan J, Peng X. Oxygen-dependent regulation of excited-state deactivation means of rational photosensitizer for sensible phototherapy. J Am Chem Soc. 2020;142:1510–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shao W, Yang C, Li F, Wu J, Wang N, Ding Q, Gao J, Ling D. Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nanomicro Lett. 2020;12:147.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Z, Xu W, Kang M, Wen H, Guo H, Zhang P, Xi L, Li Ok, Wang L, Wang D, Tang BZ. An all-round athlete on the monitor of phototheranostics: subtly regulating the steadiness between radiative and nonradiative decays for multimodal imaging-guided synergistic remedy. Adv Mater. 2020;32:2003210.

    CAS 
    Article 

    Google Scholar
     

  • Zhang L, Jing D, Jiang N, Rojalin T, Baehr CM, Zhang D, Xiao W, Wu Y, Cong Z, Li JJ, et al. Transformable peptide nanoparticles arrest HER2 signalling and trigger most cancers cell dying in vivo. Nat Nanotechnol. 2020;15:145–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liao Y, Wang R, Wang S, Xie Y, Chen H, Huang R, Shao L, Zhu Q, Liu Y. Extremely environment friendly multifunctional natural photosensitizer with aggregation-induced emission for in vivo bioimaging and photodynamic remedy. ACS Appl Mater Interfaces. 2021;13:54783–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang L, Qing D, Zhao S, Wu X, Yang Ok, Ren X, Zheng X, Lan M, Ye J, Zeng L, Niu G. Acceptor-donor-acceptor structured deep-red AIE photosensitizer: lysosome-specific focusing on, in vivo long-term imaging, and efficient photodynamic remedy. Chem Eng J. 2022;430: 132638.

    CAS 
    Article 

    Google Scholar
     

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2021. CA Most cancers J Clins. 2021;71:7–33.

    Article 

    Google Scholar
     

  • Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, Jemal A. Colorectal most cancers statistics, 2017. CA Most cancers J Clins. 2017;67:177–93.

    Article 

    Google Scholar
     

  • Montminy EM, Zhou M, Maniscalco L, Abualkhair W, Kim MK, Siegel RL, Wu XC, Itzkowitz SH, Karlitz JJ. Contributions of adenocarcinoma and carcinoid tumors to early-onset colorectal most cancers incidence charges in the us. Ann Intern Med. 2020;174:157–66.

    PubMed 
    Article 

    Google Scholar
     

  • Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJY, Younger GP, Kuipers EJ. Colorectal most cancers screening: a worldwide overview of present programmes. Intestine. 2015;64:1637.

    PubMed 
    Article 

    Google Scholar
     

  • Nelson H, Petrelli N, Carlin A, Couture J, Fleshman J, Guillem J, Miedema B, Ota D, Sargent D. Tips 2000 for colon and rectal most cancers surgical procedure. JNCI J Natl Most cancers Inst. 2001;93:583–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Charlton ME, Jiang D, Lin C, Stitzenberg KB, Pendergast JF, Chrischilles EA, Wallace RB. Elements related to use of preoperative chemoradiotherapy for rectal most cancers. J Clin Oncol. 2011;29:e14079–e14079.

    Article 

    Google Scholar
     

  • Shen J, Tao Ok, Gu P, Gui C, Wang D, Tan Z, Wang L, Wang Z, Qin A, Tang BZ, Bao S. Aggregation-induced emission luminogen for particular identification of malignant tumour in vivo. Sci China Chem. 2020;63:393–7.

    CAS 
    Article 

    Google Scholar
     

  • He H, Liu L, Liang R, Zhou H, Pan H, Zhang S, Cai L. Tumor-targeted nanoplatform for in situ oxygenation-boosted immunogenic phototherapy of colorectal most cancers. Acta Biomater. 2020;104:188–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang H, Zhuang J, Li N, Li Y, Zhu S, Hao J, Xin J, Zhao N. Environment friendly near-infrared photosensitizer with aggregation-induced emission traits for mitochondria-targeted and image-guided photodynamic most cancers remedy. Mater Chem Entrance. 2020;4:2064–71.

    CAS 
    Article 

    Google Scholar
     

  • Gao S, Yu S, Zhang Y, Wu A, Zhang S, Wei G, Wang H, Xiao Z, Lu W. Molecular engineering of near-Infrared-II photosensitizers with steric-hindrance impact for image-guided most cancers photodynamic remedy. Adv Funct Mater. 2021;31:2008356.

    CAS 
    Article 

    Google Scholar
     

  • Min X, Yi F, Han XL, Li M, Gao Q, Liang X, Chen Z, Solar Y, Liu Y. Focused photodynamic remedy utilizing a water-soluble aggregation-induced emission photosensitizer activated by an acidic tumor microenvironment. Chem Eng J. 2022;432: 134327.

    CAS 
    Article 

    Google Scholar
     

  • Zhang YH, Li X, Huang L, Kim HS, An J, Lan M, Cao QY, Kim JS. AIE based mostly GSH activatable photosensitizer for imaging-guided photodynamic remedy. Chem Commun. 2020;56:10317–20.

    CAS 
    Article 

    Google Scholar
     

  • Swami U, McFarland TR, Nussenzveig R, Agarwal N. Superior prostate most cancers: therapy advances and future instructions. Tendencies Most cancers. 2020;6:702–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2021. CA Most cancers J Clins. 2021;71:359–359.

    Article 

    Google Scholar
     

  • Huang J, Lin B, Li B. Anti-androgen receptor therapies in prostate most cancers: a quick replace and perspective. Entrance Oncol. 2022;12:865350.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kretschmer A, Tilki D. Biomarkers in prostate cancer-current medical utility and future views. Crit Rev Oncol Hematol. 2017;120:180–93.

    PubMed 
    Article 

    Google Scholar
     

  • Wang X, Ramamurthy G, Shirke AA, Walker E, Mangadlao J, Wang Z, Wang Y, Shan L, Schluchter MD, Dong Z, et al. Photodynamic remedy is an efficient adjuvant remedy for image-guided surgical procedure in prostate most cancers. Most cancers Res. 2020;80:156–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jayaram DT, Ramos Romero S, Shankar BH, Garrido C, Rubio N, Sanchez-Cid L, Gómez SB, Blanco J, Ramaiah D. In vitro and in vivo demonstration of photodynamic exercise and cytoplasm imaging via TPE nanoparticles. ACS Chem Biol. 2016;11:104–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ghosh S, Gul AR, Xu P, Lee SY, Rafique R, Kim YH, Park TJ. Goal supply of photo-triggered nanocarrier for externally activated chemo-photodynamic remedy of prostate most cancers. Mater Right this moment Chem. 2022;23: 100688.

    CAS 
    Article 

    Google Scholar
     

  • Tan H, Hou N, Liu Y, Liu B, Cao W, Zheng D, Li W, Liu Y, Xu B, Wang Z, Cui D. CD133 antibody focused supply of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy in opposition to castration resistant prostate most cancers. Nanomedicine. 2020;27: 102192.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bouffard E, Mauriello Jimenez C, El Cheikh Ok, Maynadier M, Basile I, Raehm L, Nguyen C, Gary Bobo M, Garcia M, Durand JO, Morère A. Environment friendly photodynamic remedy of prostate most cancers cells via an improved focusing on of the cation-independent mannose 6-phosphate receptor. Int J Mol Sci. 2019;20:2809.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Overchuk M, Damen MPF, Harmatys KM, Pomper MG, Chen J, Zheng G. Lengthy-circulating prostate-specific membrane antigen-targeted NIR phototheranostic agent. Photochem Photobiol. 2020;96:718–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Q, Huang J, He L, Yang X, Yuan L, Cheng D. Molecular fluorescent probes for liver tumor imaging. Chem Asian J. 2022;17: e202200091.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. World most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clins. 2018;68:394–424.

    Article 

    Google Scholar
     

  • EASL medical apply pointers. administration of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

    Article 

    Google Scholar
     

  • Patel Ok, Lamm R, Altshuler P, Dang H, Shah AP. Hepatocellular carcinoma-the affect of immunoanatomy and the function of immunotherapy. Int J Mol Sci. 2020;21:6757.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsilimigras DI, Bagante F, Sahara Ok, Moris D, Hyer JM, Wu L, Ratti F, Marques HP, Soubrane O, Paredes AZ, et al. Prognosis after resection of barcelona clinic liver most cancers (BCLC) stage 0, A, and B hepatocellular carcinoma: a complete evaluation of the present BCLC classification. Ann Surg Oncol. 2019;26:3693–700.

    PubMed 
    Article 

    Google Scholar
     

  • Verslype C, Rosmorduc O, Rougier P. Hepatocellular carcinoma: ESMO–ESDO medical apply pointers for analysis, therapy and follow-up. Ann Oncol. 2012;23:vii41–8.

    PubMed 
    Article 

    Google Scholar
     

  • Bruix J, Sherman M. Administration of hepatocellular carcinoma: an replace. Hepatology. 2011;53:1020–2.

    PubMed 
    Article 

    Google Scholar
     

  • Bruix J, Reig M, Sherman M. Proof-based analysis, staging, and therapy of sufferers with hepatocellular carcinoma. Gastroenterology. 2016;150:835–53.

    PubMed 
    Article 

    Google Scholar
     

  • Koda M, Murawaki Y, Hirooka Y, Kitamoto M, Ono M, Sakaeda H, Joko Ok, Sato S, Tamaki Ok, Yamasaki T, et al. Issues of radiofrequency ablation for hepatocellular carcinoma in a multicenter examine: an evaluation of 16 346 handled nodules in 13 283 sufferers. Hepatol Res. 2012;42:1058–64.

    PubMed 
    Article 

    Google Scholar
     

  • Teng M, Chen Y, Xie Y, Li Z, Wan Q, Wang Z, Yang J. Vibrant near-infrared aggregation-induced emission dots for long-term bioimaging in vitro/vivo. Dyes Pigm. 2021;195: 109679.

    CAS 
    Article 

    Google Scholar
     

  • Xia Q, Chen Z, Zhou Y, Liu R. Close to-infrared natural fluorescent nanoparticles for long-term monitoring and photodynamic remedy of most cancers. J Nanotheranostics. 2019;3:156–65.

    Article 

    Google Scholar
     

  • Dineshkumar S, Raj A, Srivastava A, Mukherjee S, Pasha SS, Kachwal V, Fageria L, Chowdhury R, Laskar IR. Facile incorporation of “aggregation-induced emission”-active conjugated polymer into mesoporous silica hole nanospheres: synthesis, characterization, photophysical research, and software in bioimaging. ACS Appl Mater Inter. 2019;11:31270–82.

    CAS 
    Article 

    Google Scholar
     

  • Gao Y, Zheng QC, Xu S, Yuan Y, Cheng X, Jiang S, Kenry YuQ, Tune Z, Liu B, Li M. Theranostic nanodots with aggregation-induced emission attribute for focused and image-guided photodynamic remedy of hepatocellular carcinoma. Theranostics. 2019;9:1264–79.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao D, Han HH, Zhu L, Xu FZ, Ma XY, Li J, James TD, Zang Y, He XP, Wang C. Lengthy-wavelength AIE-based fluorescent probes for mitochondria-targeted imaging and photodynamic remedy of hepatoma cells. ACS Appl Bio Mater. 2021;4:7016–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ding Ok, Wang L, Zhu J, He D, Huang Y, Zhang W, Wang Z, Qin A, Hou J, Tang BZ. Picture-enhanced chemotherapy efficiency in bladder most cancers therapy by way of albumin coated AIE aggregates. ACS Nano. 2022;16:7535–46.

    CAS 
    Article 

    Google Scholar
     

  • Duo Y, Zhu D, Solar X, Suo M, Zheng Z, Jiang W, Tang BZ. Affected person-derived microvesicles/AIE luminogen hybrid system for personalised sonodynamic most cancers remedy in patient-derived xenograft fashions. Biomaterials. 2021;272: 120755.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solar X, Zebibula A, Dong X, Li G, Zhang G, Zhang D, Qian J, He S. Focused and imaging-guided in vivo photodynamic remedy for tumors utilizing dual-function, aggregation-induced emission nanoparticles. Nano Res. 2018;11:2756–70.

    CAS 
    Article 

    Google Scholar
     

  • Solar X, Zebibula A, Dong X, Zhang G, Zhang D, Qian J, He S. Aggregation-induced emission nanoparticles encapsulated with PEGylated nano graphene oxide and their functions in two-photon fluorescence bioimaging and photodynamic remedy in vitro and in vivo. ACS Appl Mater Interfaces. 2018;10:25037–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hao J, Yin H, Lu W, Zhuang J, Chen M, Gao J, Zhu G, Cao W, Kan Y, Lu Y, Guo H. Modulating endogenous oxygen consumption enhanced AIEgens-mediated photodynamic remedy in opposition to superior bladder tumor. Half Half Syst Charact. 2021;38:2100048.

    CAS 
    Article 

    Google Scholar
     

  • Lauterio A, De Carlis R, Centonze L, Buscemi V, Incarbone N, Vella I, De Carlis L. Present surgical administration of peri-hilar and intra-hepatic cholangiocarcinoma. Cancers. 2021;13:3657.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pear S, Bachini M, Gardett I, Lindsey S, Delcorso Ellmann T, Abdel WR. Obstacles for medical trial enrollment in cholangiocarcinoma sufferers. J Clin Oncol. 2022;40:407–407.

    Article 

    Google Scholar
     

  • Li H, Chen L, Zhu GY, Yao X, Dong R, Guo J-H. Interventional therapy for cholangiocarcinoma. Entrance Oncol. 2021;11:671327.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai M, Fu W, Su G, Cao J, Gao L, Huang C, Ma H, Zhang J, Yue P, Bai B, et al. The function of extracellular vesicles in cholangiocarcinoma. Most cancers Cell Int. 2020;20:435.

    PubMed Central 
    Article 

    Google Scholar
     

  • Samatiwat P, Prawan A, Senggunprai L, Kukongviriyapan V. Repression of Nrf2 enhances antitumor impact of 5-fluorouracil and gemcitabine on cholangiocarcinoma cells. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:601–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rahnemai Azar AA, Weisbrod AB, Dillhoff M, Schmidt C, Pawlik TM. Intrahepatic cholangiocarcinoma: present administration and rising therapies. Professional Rev Gastroenterol Hepatol. 2017;11:439–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Massironi S, Pilla L, Elvevi A, Longarini R, Rossi RE, Bidoli P, Invernizzi P. New and rising systemic therapeutic choices for superior cholangiocarcinoma. Cells. 2020;9:688.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rumalla A, Baron TH, Wang KK, Gores GJ, Stadheim LM, de Groen PC. Endoscopic software of photodynamic remedy for cholangiocarcinoma. Gastrointest Endosc. 2001;53:500–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumta NA, DeRoche Ok, Kahaleh M. Temoporfin photodynamic remedy in superior hilar ductal carcinoma: a promising endoscopic modality. Hepatology. 2015;62:1342–3.

    PubMed 
    Article 

    Google Scholar
     

  • Kahaleh M. Photodynamic remedy in cholangiocarcinoma. J Natl Compr Canc Netw. 2012;10:S44–7.

    PubMed 
    Article 

    Google Scholar
     

  • Lamarca A, Edeline J, McNamara MG, Hubner RA, Nagino M, Bridgewater J, Primrose J, Valle JW. Present requirements and future views in adjuvant therapy for biliary tract cancers. Most cancers Deal with Rev. 2020;84: 101936.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li M, Gao Y, Yuan Y, Wu Y, Tune Z, Tang BZ, Liu B, Zheng QC. One-step formulation of focused aggregation-induced emission dots for image-guided photodynamic remedy of cholangiocarcinoma. ACS Nano. 2017;11:3922–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou T, Zhu J, Shang D, Chai C, Li Y, Solar H, Li Y, Gao M, Li M. Mitochondria-anchoring and AIE-active photosensitizer for self-monitored cholangiocarcinoma remedy. Mater Chem Entrance. 2020;4:3201–8.

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments