Debe, M. Ok. Electrocatalyst approaches and challenges for automotive gas cells. Nature 486, 43–51 (2012).
Yarlagadda, V. et al. Boosting gas cell efficiency with accessible carbon mesopores. ACS Vitality Lett. 3, 618–621 (2018).
Tollefson, J. Price its weight in platinum. Nature 450, 334–335 (2007).
Bossi, T. & Gediga, J. The environmental profile of platinum group metals. Johnson Matthey Technol. Rev. 61, 111–121 (2017).
James, B. D., Huya-Kouadio, J. M., Houchins, C. & DeSantis, D. A. Mass Manufacturing Price Estimation of Direct H2 PEM Gas Cell Programs for Transportation Purposes: 2018 Replace (US DOE, 2018).
Pollet, B. G., Kocha, S. S. & Staffell, I. Present standing of automotive gas cells for sustainable transport. Curr. Opin. Electrochem. 16, 90–95 (2019).
Gröger, O., Gasteiger, H. A. & Suchsland, J.-P. Electromobility: batteries or gas cells? J. Electrochem. Soc. 162, A2605–A2622 (2015).
Hao, H. et al. Securing platinum-group metals for transport low-carbon transition. One Earth 1, 117–125 (2019).
Kongkanand, A. & Mathias, M. F. The precedence and problem of high-power efficiency of low-platinum proton-exchange membrane gas cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).
Li, M. et al. Ultrafine jagged platinum nanowires allow ultrahigh mass exercise for the oxygen discount response. Science 354, 1414–1419 (2016).
Escudero-Escribano, M. et al. Tuning the exercise of Pt alloy electrocatalysts by way of the lanthanide contraction. Science 352, 73–76 (2016).
Chen, C. et al. Extremely crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).
Greeley, J. et al. Alloys of platinum and early transition metals as oxygen discount electrocatalysts. Nat. Chem. 1, 552–556 (2009).
Zhang, L. et al. Platinum-based nanocages with subnanometer-thick partitions and well-defined, controllable aspects. Science 349, 412–416 (2015).
Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in formed Pt alloy nanoparticles and their structural behaviour throughout electrocatalysis. Nat. Mater. 12, 765–771 (2013).
Seh, Z. W. et al. Combining concept and experiment in electrocatalysis: insights into supplies design. Science 355, eaad4998 (2017).
Li, W., Chen, Z., Xu, L. & Yan, Y. An answer-phase synthesis methodology to extremely energetic Pt-Co/C electrocatalysts for proton alternate membrane gas cell. J. Energy Sources 195, 2534–2540 (2010).
Zhang, Z. et al. One-pot synthesis of extremely anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen discount and methanol oxidation. Adv. Mater. 28, 8712–8717 (2016).
Wang, X. X. et al. Ordered Pt3Co intermetallic nanoparticles derived from metallic–natural frameworks for oxygen discount. Nano Lett. 18, 4163–4171 (2018).
Huang, L., Zheng, C. Y., Shen, B. & Mirkin, C. A. Excessive-index-facet metallic–alloy nanoparticles as gas cell electrocatalysts. Adv. Mater. 32, 2002849 (2020).
Ott, S. et al. Ionomer distribution management in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton alternate membrane gas cells. Nat. Mater. 19, 77–85 (2019).
Qiao, Z. et al. 3D porous graphitic nanocarbon for enhancing the efficiency and sturdiness of Pt catalysts: a steadiness between graphitization and hierarchical porosity. Vitality Environ. Sci. 12, 2830–2841 (2019).
Wang, L. et al. Tunable intrinsic pressure in two-dimensional transition metallic electrocatalysts. Science 363, 870–874 (2019).
Wang, C. et al. Synthesis of homogeneous Pt-bimetallic nanoparticles as extremely environment friendly electrocatalysts. ACS Catal. 1, 1355–1359 (2011).
He, D. S. et al. Ultrathin icosahedral Pt-enriched nanocage with wonderful oxygen discount response exercise. J. Am. Chem. Soc. 138, 1494–1497 (2016).
Pizzutilo, E. et al. The area confinement strategy utilizing hole graphitic spheres to unveil exercise and stability of Pt–Co nanocatalysts for PEMFC. Adv. Vitality Mater. 7, 1700835 (2017).
Mezzavilla, S. et al. Construction–exercise–stability relationships for space-confined PtxNiy nanoparticles within the oxygen discount response. ACS Catal. 6, 8058–8068 (2016).
DOE Technical Targets for Polymer Electrolyte Membrane Gas Cell Elements https://vitality.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components (US DOE, 2016).
Kodama, Ok., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in making use of extremely energetic Pt-based nanostructured catalysts for oxygen discount reactions to gas cell autos. Nat. Nanotechnol. 16, 140–147 (2021).
Weber, A. Z. & Kusoglu, A. Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J. Mater. Chem. A 2, 17207–17211 (2014).
Holby, E. F., Sheng, W., Shao-Horn, Y. & Morgan, D. Pt nanoparticle stability in PEM gas cells: affect of particle measurement distribution and crossover hydrogen. Vitality Environ. Sci. 2, 865–871 (2009).
Borup, R. L. et al. Latest developments in catalyst-related PEM gas cell sturdiness. Curr. Opin. Electrochem. 21, 192–200 (2020).
Tang, L., Li, X., Cammarata, R. C., Friesen, C. & Sieradzki, Ok. Electrochemical stability of elemental metallic nanoparticles. J. Am. Chem. Soc. 132, 11722–11726 (2010).
Tang, L. et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 132, 596–600 (2010).
Du, L. et al. Low-PGM and PGM-free catalysts for proton alternate membrane gas cells: stability challenges and materials options. Adv. Mater. 33, 1908232 (2021).
Han, B. et al. Report exercise and stability of dealloyed bimetallic catalysts for proton alternate membrane gas cells. Vitality Environ. Sci. 8, 258–266 (2015).
Braaten, J. P., Xu, X., Cai, Y., Kongkanand, A. & Litster, S. Contaminant cation impact on oxygen transport by way of the ionomers of polymer electrolyte membrane gas cells. J. Electrochem. Soc. 166, F1337–F1343 (2019).
Sulek, M., Adams, J., Kaberline, S., Ricketts, M. & Waldecker, J. R. In situ metallic ion contamination and the consequences on proton alternate membrane gas cell efficiency. J. Energy Sources 196, 8967–8972 (2011).
Hoene, J. V., Charles, R. G. & Hickam, W. M. Thermal decomposition of metallic acetylacetonates: mass spectrometer research. J. Phys. Chem. 62, 1098–1101 (1958).
Grimm, S. et al. Fuel-phase aluminium acetylacetonate decomposition: revision of the present mechanism by VUV synchrotron radiation. Phys. Chem. Chem. Phys. 23, 15059–15075 (2021).
Fei, L.-f et al. Direct statement of carbon nanostructure development at liquid–stable interfaces. Chem. Commun. 50, 826–828 (2014).
Picher, M., Lin, P. A., Gomez-Ballesteros, J. L., Balbuena, P. B. & Sharma, R. Nucleation of graphene and its conversion to single-walled carbon nanotubes. Nano Lett. 14, 6104–6108 (2014).
Fan, H. et al. Dynamic state and energetic construction of Ni–Co catalyst in carbon nanofiber development revealed by in situ transmission electron microscopy. ACS Nano 15, 17895–17906 (2021).
Zhao, Z. et al. Tailoring a three-phase microenvironment for high-performance oxygen discount response in proton alternate membrane gas cells. Matter 3, 1774–1790 (2020).
Cullen, D. A. et al. New roads and challenges for gas cells in heavy-duty transportation. Nat. Vitality 6, 462–474 (2021).
Chong, L. et al. Ultralow-loading platinum–cobalt gas cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).
Jia, Q. et al. Improved oxygen discount exercise and sturdiness of dealloyed PtCox catalysts for proton alternate membrane gas cells: pressure, ligand, and particle measurement results. ACS Catal. 5, 176–186 (2015).
Li, J. et al. Onerous-magnet L10-CoPt nanoparticles advance gas cell catalysis. Joule 3, 124–135 (2019).
Papadias, D. D. et al. Sturdiness of Pt–Co alloy polymer electrolyte gas cell cathode catalysts underneath accelerated stress checks. J. Electrochem. Soc. 165, F3166–F3177 (2018).
Slack, J. J. et al. Nanofiber gas cell MEAs with a PtCo/C cathode. J. Electrochem. Soc. 166, F3202–F3209 (2019).
Gas Cell Applied sciences Workplace Multi-year Analysis, Improvement, and Demonstration Plan https://www.vitality.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 (US DOE, 2017).
Zhao, Z. et al. Pt-based nanocrystal for electrocatalytic oxygen discount. Adv. Mater. 31, 1808115 (2019).
Kleen, G. & Padgett, E. Sturdiness-Adjusted Gas Cell System Price (US DOE, 2021).
Baker, D. R., Caulk, D. A., Neyerlin, Ok. C. & Murphy, M. W. Measurement of oxygen transport resistance in PEM gas cells by limiting present strategies. J. Electrochem. Soc. 156, B991–B1003 (2009).
Garsany, Y., Atkinson, R. W., Gould, B. D. & Swider-Lyons, Ok. E. Excessive energy, low-Pt membrane electrode assemblies for proton alternate membrane gas cells. J. Energy Sources 408, 38–45 (2018).
Papageorgopoulos, D. Gas Cell R&D Overview (US DOE, 2019).
Kongkanand, A. Extremely Accessible Catalysts for Sturdy Excessive Energy Efficiency (US DOE, 2020).
Stariha, S. et al. Latest advances in catalyst accelerated stress checks for polymer electrolyte membrane gas cells. J. Electrochem. Soc. 165, F492–F501 (2018).
Zhao, Z. et al. Tailoring a three-phase microenvironment for high-performance oxygen discount response in proton alternate membrane gas cells. Matter 3, 1774–1790 (2020).
Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).
Stariha, S. et al. Latest advances in catalyst accelerated stress checks for polymer electrolyte membrane gas cells. J. Electrochem. Soc. 165, F492–F501 (2018).
Garrick, T. R., Moylan, T. E., Carpenter, M. Ok. & Kongkanand, A. Electrochemically energetic floor space measurement of aged Pt alloy catalysts in PEM gas cells by CO stripping. J. Electrochem. Soc. 164, F55–F59 (2016).
Yarlagadda, V. et al. Boosting gas cell efficiency with accessible carbon mesopores. ACS Vitality Lett. 3, 618–621 (2018).
Garsany, Y., Atkinson, R. W., Gould, B. D. & Swider-Lyons, Ok. E. Excessive energy, low-Pt membrane electrode assemblies for proton alternate membrane gas cells. J. Energy Sources 408, 38–45 (2018).
Baker, D. R., Caulk, D. A., Neyerlin, Ok. C. & Murphy, M. W. Measurement of oxygen transport resistance in PEM gas cells by limiting present strategies. J. Electrochem. Soc. 156, B991–B1003 (2009).