Monday, December 5, 2022
HomeNanotechnologySelf-adjuvanting most cancers nanovaccines | Journal of Nanobiotechnology

Self-adjuvanting most cancers nanovaccines | Journal of Nanobiotechnology


  • van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen acknowledged by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.

    PubMed 
    Article 

    Google Scholar
     

  • Butterfield LH. Most cancers vaccines. BMJ. 2015;350: h988.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Le Thanh T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine growth panorama. Nat Rev Drug Discov. 2020;19:305–6.

    Article 
    CAS 

    Google Scholar
     

  • Antonarelli G, Corti C, Tarantino P, Ascione L, Cortes J, Romero P, et al. Therapeutic most cancers vaccines revamping: expertise developments and pitfalls. Ann Oncol. 2021. https://doi.org/10.1016/j.annonc.2021.08.2153.

    Article 
    PubMed 

    Google Scholar
     

  • Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, et al. COVID-19 vaccine growth and a possible nanomaterial path ahead. Nat Nanotechnol. 2020;15:646–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Enokida T, Moreira A, Bhardwaj N. Vaccines for immunoprevention of most cancers. J Clin Make investments. 2021. https://doi.org/10.1172/JCI146956.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic most cancers vaccines. Nat Rev Most cancers. 2021;21:360–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cox JC, Coulter AR. Adjuvants—a classification and evaluation of their modes of motion. Vaccine. 1997;15:248–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine adjuvants: from 1920 to 2015 and past. Vaccines. 2015;3:320–43.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Danielsson R, Eriksson H. Aluminium adjuvants in vaccines—a option to modulate the immune response. Semin Cell Dev Biol. 2021;115:3–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marrack P, McKee AS, Munks MW. In the direction of an understanding of the adjuvant motion of aluminium. Nat Rev Immunol. 2009;9:287–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a evaluation on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Harandi AM. Programs evaluation of human vaccine adjuvants. Semin Immunol. 2018;39:30–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ammi R, De Waele J, Willemen Y, Van Brussel I, Schrijvers DM, Lion E, et al. Poly(I:C) as most cancers vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol Ther. 2015;146:120–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sultan H, Salazar AM, Celis E. Poly-ICLC, a multi-functional immune modulator for treating most cancers. Semin Immunol. 2020;49: 101414.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Most cancers vaccines as promising immuno-therapeutics: platforms and present progress. J Hematol Oncol. 2022;15:28.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Azharuddin M, Zhu GH, Sengupta A, Hinkula J, Slater NKH, Patra HK. Nano toolbox in immune modulation and nanovaccines. Tendencies Biotechnol. 2022. https://doi.org/10.1016/j.tibtech.2022.03.011.

    Article 
    PubMed 

    Google Scholar
     

  • Han S, Ma W, Jiang D, Sutherlin L, Zhang J, Lu Y, et al. Intracellular signaling pathway in dendritic cells and antigen transport pathway in vivo mediated by an [email protected]/PLGA nano-vaccine. J Nanobiotechnol. 2021;19:394.

    CAS 
    Article 

    Google Scholar
     

  • Yu X, Dai Y, Zhao Y, Qi S, Liu L, Lu L, et al. Melittin-lipid nanoparticles goal to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11:1110.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu M. Immunological views on spatial and temporal vaccine supply. Adv Drug Deliv Rev. 2021;178: 113966.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Machtakova M, Thérien-Aubin H, Landfester Okay. Polymer nano-systems for the encapsulation and supply of energetic biomacromolecular therapeutic brokers. Chem Soc Rev. 2021. https://doi.org/10.1039/D1CS00686J.

    Article 

    Google Scholar
     

  • Nasrollahi F, Haghniaz R, Hosseini V, Davoodi E, Mahmoodi M, Karamikamkar S, et al. Micro and nanoscale applied sciences for prognosis of viral infections. Small. 2021;17: e2100692.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zhang Y-N, Lazarovits J, Poon W, Ouyang B, Nguyen LNM, Kingston BR, et al. Nanoparticle measurement influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett. 2019;19:7226–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xie X, Feng Y, Zhang H, Su Q, Track T, Yang G, et al. Reworking tumor immunosuppressive microenvironment by way of a novel bioactive nanovaccines potentiates the efficacy of most cancers immunotherapy. Bioact Mater. 2022;16:107–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Conniot J, Scomparin A, Peres C, Yeini E, Pozzi S, Matos AI, et al. Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat Nanotechnol. 2019;14:891–901.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, et al. Rising vaccine nanotechnology: from protection towards an infection to sniping most cancers. Acta Pharm Sin B. 2022. https://doi.org/10.1016/j.apsb.2021.12.021.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng J, Zhang P, Chen Q, Wang Z, Gu Y, Ma J, et al. Two-pronged intracellular co-delivery of antigen and adjuvant for synergistic most cancers immunotherapy. Adv Mater. 2022. https://doi.org/10.1002/adma.202202168.

    Article 
    PubMed 

    Google Scholar
     

  • Solar B, Xia T. Nanomaterial-based vaccine adjuvants. J Mater Chem B. 2016;4:5496–509.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schijns VE. Immunological ideas of vaccine adjuvant exercise. Curr Opin Immunol. 2000;12:456–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pulendran B, Arunachalam PS, O’Hagan DT. Rising ideas within the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20:454–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Duthie MS, Windish HP, Fox CB, Reed SG. Use of outlined TLR ligands as adjuvants inside human vaccines. Immunol Rev. 2011;239:178–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19:24–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao H, Lv X, Huang J, Huang S, Zhou H, Wang H, et al. Two-phase releasing immune-stimulating composite orchestrates safety towards microbial infections. Biomaterials. 2021;277: 121106.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yong HY, Luo D. RIG-I-like receptors as novel targets for pan-antivirals and vaccine adjuvants towards rising and re-emerging viral infections. Entrance Immunol. 2018;9:1379.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Vyas JM, Van der Veen AG, Ploegh HL. The identified unknowns of antigen processing and presentation. Nat Rev Immunol. 2008;8:607–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu Y, Shi Y, You J. Technique and scientific utility of up-regulating cross presentation by DCs in anti-tumor remedy. J Management Launch. 2022;341:184–205.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu Rev Immunol. 2017;35:149–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dadfar SM, Roemhild Okay, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic purposes. Adv Drug Deliv Rev. 2019;138:302–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khan S, Setua S, Kumari S, Dan N, Massey A, Hafeez BB, et al. Superparamagnetic iron oxide nanoparticles of curcumin improve gemcitabine therapeutic response in pancreatic most cancers. Biomaterials. 2019;208:83–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mou Y, Hou Y, Chen B, Hua Z, Zhang Y, Xie H, et al. In vivo migration of dendritic cells labeled with artificial superparamagnetic iron oxide. Int J Nanomed. 2011;6:2633–40.

    CAS 

    Google Scholar
     

  • Mou Y, Xing Y, Ren H, Cui Z, Zhang Y, Yu G, et al. The impact of superparamagnetic iron oxide nanoparticle floor cost on antigen cross-presentation. Nanoscale Res Lett. 2017;12:52.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu H, Dong H, Zhou N, Dong S, Chen L, Zhu Y, et al. SPIO improve the cross-presentation and migration of DCs and anionic SPIO affect the nanoadjuvant results associated to interleukin-1β. Nanoscale Res Lett. 2018;13:409.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron oxide nanoparticles-based vaccine supply for most cancers therapy. Mol Pharm. 2018;15:1791–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li H, Li Y, Jiao J, Hu H-M. Alpha-alumina nanoparticles induce environment friendly autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol. 2011;6:645–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Y, Wang L-X, Yang G, Hao F, Urba WJ, Hu H-M. Environment friendly cross-presentation depends upon autophagy in tumor cells. Most cancers Res. 2008;68:6889–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van Kaer L, Parekh VV, Postoak JL, Wu L. Function of autophagy in MHC class I-restricted antigen presentation. Mol Immunol. 2019;113:2–5.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zhao J, Xu Y, Ma S, Wang Y, Huang Z, Qu H, et al. A minimalist binary vaccine provider for customized postoperative most cancers vaccine remedy. Adv Mater. 2022. https://doi.org/10.1002/adma.202109254.

    Article 
    PubMed 

    Google Scholar
     

  • Li W, Jing Z, Wang S, Li Q, Xing Y, Shi H, et al. P22 virus-like particles as an efficient antigen supply nanoplatform for most cancers immunotherapy. Biomaterials. 2021;271: 120726.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kubota H, Nambu Y, Endo T. Handy and quantitative esterification of poly (γ-glutamic acid) produced by microorganism. J Polym Sci A Polym Chem. 1993;31:2877–8.

    CAS 
    Article 

    Google Scholar
     

  • Manocha B, Margaritis A. Manufacturing and characterization of gamma-polyglutamic acid nanoparticles for managed anticancer drug launch. Crit Rev Biotechnol. 2008;28:83–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoshikawa T, Okada N, Oda A, Matsuo Okay, Matsuo Okay, Kayamuro H, et al. Nanoparticles constructed by self-assembly of amphiphilic gamma-PGA can ship antigens to antigen-presenting cells with excessive effectivity: a brand new tumor-vaccine provider for eliciting effector T cells. Vaccine. 2008;26:1303–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Uto T, Akagi T, Yoshinaga Okay, Toyama M, Akashi M, Baba M. The induction of innate and adaptive immunity by biodegradable poly (γ-glutamic acid) nanoparticles by way of a TLR4 and MyD88 signaling pathway. Biomaterials. 2011;32:5206–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matsuo Okay, Koizumi H, Akashi M, Nakagawa S, Fujita T, Yamamoto A, et al. Intranasal immunization with poly (γ-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity. J Management Launch. 2011;152:310–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Estevez F, Carr A, Solorzano L, Valiente O, Mesa C, Barroso O, et al. Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small measurement proteoliposomes (VSSP). Vaccine. 1999;18:190–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mesa C, De León J, Rigley Okay, Fernández LE. Very small measurement proteoliposomes derived from Neisseria meningitidis: an efficient adjuvant for Th1 induction and dendritic cell activation. Vaccine. 2004;22:3045–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mesa C, de León J, Rigley Okay, Fernández LE. Very small measurement proteoliposomes derived from Neisseria meningitidis: an efficient adjuvant for dendritic cell activation. Vaccine. 2006;24(Suppl 2):S2-42.

    PubMed 

    Google Scholar
     

  • Torréns I, Mendoza O, Batte A, Reyes O, Fernández LE, Mesa C, et al. Immunotherapy with CTL peptide and VSSP eradicated established human papillomavirus (HPV) kind 16 E7-expressing tumors. Vaccine. 2005;23:5768–74.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yan W, Chen W, Huang L. Mechanism of adjuvant exercise of cationic liposome: phosphorylation of a MAP kinase, ERK and induction of chemokines. Mol Immunol. 2007;44:3672–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen W, Yan W, Huang L. A easy however efficient most cancers vaccine consisting of an antigen and a cationic lipid. Most cancers Immunol Immunother. 2008;57:517–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vasievich EA, Chen W, Huang L. Enantiospecific adjuvant exercise of cationic lipid DOTAP in most cancers vaccine. Most cancers Immunol Immunother. 2011;60:629–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gandhapudi SK, Ward M, Bush JPC, Bedu-Addo F, Conn G, Woodward JG. Antigen priming with enantiospecific cationic lipid nanoparticles induces potent antitumor CTL responses by novel induction of a sort I IFN response. J Immunol. 2019;202:3524–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang H, You X, Wang X, Cui L, Wang Z, Xu F, et al. Supply of mRNA vaccine with a lipid-like materials potentiates antitumor efficacy by Toll-like receptor 4 signaling. Proc Natl Acad Sci USA. 2021. https://doi.org/10.1073/pnas.2005191118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basu A, Domb AJ. Current advances in polyanhydride based mostly biomaterials. Adv Mater. 2018;30: e1706815.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Tamayo I, Irache JM, Mansilla C, Ochoa-Repáraz J, Lasarte JJ, Gamazo C. Poly(anhydride) nanoparticles act as energetic Th1 adjuvants by Toll-like receptor exploitation. Clin Vaccine Immunol. 2010;17:1356–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wafa EI, Geary SM, Goodman JT, Narasimhan B, Salem AK. The impact of polyanhydride chemistry in particle-based most cancers vaccines on the magnitude of the anti-tumor immune response. Acta Biomater. 2017;50:417–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wafa EI, Geary SM, Ross KA, Goodman JT, Narasimhan B, Salem AK. Single dose of a polyanhydride particle-based vaccine generates potent antigen-specific antitumor immune responses. J Pharmacol Exp Ther. 2019;370:855–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Darling R, Senapati S, Christiansen J, Liu L, Ramer-Tait AE, Narasimhan B, et al. Polyanhydride nanoparticles induce low inflammatory dendritic cell activation leading to CD8 T cell reminiscence and delayed tumor development. Int J Nanomed. 2020;15:6579–92.

    CAS 
    Article 

    Google Scholar
     

  • Gilmore TD, Wolenski FS. NF-κB: the place did it come from and why? Immunol Rev. 2012;246:14–35.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • DiDonato JA, Mercurio F, Karin M. NF-κB and the hyperlink between irritation and most cancers. Immunol Rev. 2012;246:379–400.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Xu Y, Wang Y, Yang Q, Liu Z, Xiao Z, Le Z, et al. A flexible supramolecular nanoadjuvant that prompts NF-κB for most cancers immunotherapy. Theranostics. 2019;9:3388–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li A, Qin L, Zhu D, Zhu R, Solar J, Wang S. Signalling pathways concerned within the activation of dendritic cells by layered double hydroxide nanoparticles. Biomaterials. 2010;31:748–56.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Li A, Qin L, Wang W, Zhu R, Yu Y, Liu H, et al. The usage of layered double hydroxides as DNA vaccine supply vector for enhancement of anti-melanoma immune response. Biomaterials. 2011;32:469–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan S, Gu W, Zhang B, Rolfe BE, Xu ZP. Excessive adjuvant exercise of layered double hydroxide nanoparticles and nanosheets in anti-tumour vaccine formulations. Dalton Trans. 2018;47:2956–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chattopadhyay S, Sprint SK, Ghosh T, Das S, Tripathy S, Mandal D, et al. Anticancer and immunostimulatory function of encapsulated tumor antigen containing cobalt oxide nanoparticles. J Biol Inorg Chem. 2013;18:957–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chattopadhyay S, Sprint SK, Mandal D, Das B, Tripathy S, Dey A, et al. Metallic based mostly nanoparticles as most cancers antigen supply automobiles for macrophage based mostly antitumor vaccine. Vaccine. 2016;34:957–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su Q, Track H, Huang P, Zhang C, Yang J, Kong D, et al. Supramolecular co-assembly of self-adjuvanting nanofibrious peptide hydrogel enhances most cancers vaccination by activating MyD88-dependent NF-κB signaling pathway with out irritation. Bioact Mater. 2021;6:3924–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lamkanfi M, Dixit VM. Mechanisms and features of inflammasomes. Cell. 2014;157:1013–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci. 2014;1319:82–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tartey S, Kanneganti T-D. Differential function of the NLRP3 inflammasome in an infection and tumorigenesis. Immunology. 2019;156:329–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morishige T, Yoshioka Y, Inakura H, Tanabe A, Yao X, Narimatsu S, et al. The impact of floor modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1beta manufacturing, ROS manufacturing and endosomal rupture. Biomaterials. 2010;31:6833–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li WA, Lu BY, Gu L, Choi Y, Kim J, Mooney DJ. The impact of floor modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials. 2016;83:249–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen TL, Choi Y, Kim J. Mesoporous silica as a flexible platform for most cancers immunotherapy. Adv Mater. 2019;31: e1803953.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wang X, Li X, Ito A, Watanabe Y, Sogo Y, Tsuji NM, et al. Stimulation of in vivo antitumor immunity with hole mesoporous silica nanospheres. Angew Chem Int Ed Engl. 2016;55:1899–903.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang Y, Lu Y, Abbaraju PL, Zhang J, Zhang M, Xiang G, et al. Multi-shelled dendritic mesoporous organosilica hole spheres: roles of composition and structure in most cancers immunotherapy. Angew Chem Int Ed Engl. 2017;56:8446–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li AW, Sobral MC, Badrinath S, Choi Y, Graveline A, Stafford AG, et al. A facile method to boost antigen response for customized most cancers vaccination. Nat Mater. 2018;17:528–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci. 2017;8:1719–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human most cancers. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19071979.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida JPM, Lin AY, Figueroa ER, Foster AE, Drezek RA. In vivo gold nanoparticle supply of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor fashions. Small. 2015;11:1453–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niikura Okay, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, et al. Gold nanoparticles as a vaccine platform: affect of measurement and form on immunological responses in vitro and in vivo. ACS Nano. 2013;7:3926–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu M, Du L, Zhao R, Wang HY, Zhao Y, Nie G, et al. Cell-penetrating nanoparticles activate the inflammasome to boost antibody manufacturing by concentrating on microtubule-associated protein 1-light chain 3 for degradation. ACS Nano. 2020;14:3703–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Manna S, Howitz WJ, Oldenhuis NJ, Eldredge AC, Shen J, Nihesh FN, et al. Immunomodulation of the NLRP3 inflammasome by structure-based activator design and useful regulation by way of lysosomal rupture. ACS Cent Sci. 2018;4:982–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fan Z, Jan S, Hickey JC, Davies DH, Felgner J, Felgner PL, et al. Multifunctional dendronized polypeptides for managed adjuvanticity. Biomacromolecules. 2021;22:5074–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saleiro D, Platanias LC. Interferon signaling in most cancers. Non-canonical pathways and management of intracellular immune checkpoints. Semin Immunol. 2019;43:101299.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, et al. Tailoring porous silicon for biomedical purposes: from drug supply to most cancers immunotherapy. Adv Mater. 2018;30: e1703740.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Xia X, Mai J, Xu R, Perez JET, Guevara ML, Shen Q, et al. Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing kind I interferon response. Cell Rep. 2015;11:957–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, et al. A STING-activating nanovaccine for most cancers immunotherapy. Nat Nanotechnol. 2017;12:648–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li S, Luo M, Wang Z, Feng Q, Wilhelm J, Wang X, et al. Extended activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng. 2021;5:455–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Luo M, Liu Z, Zhang X, Han C, Samandi LZ, Dong C, et al. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves most cancers immunotherapy. J Management Launch. 2019;300:154–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luo Z, He T, Liu P, Yi Z, Zhu S, Liang X, et al. Self-adjuvanted molecular activator (SeaMac) nanovaccines promote most cancers immunotherapy. Adv Healthc Mater. 2021;10: e2002080.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba Okay. Chitosan as a bioactive polymer: processing, properties and purposes. Int J Biol Macromol. 2017;105:1358–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khan F, Pham DTN, Oloketuyi SF, Manivasagan P, Oh J, Kim Y-M. Chitosan and their derivatives: antibiofilm medication towards pathogenic micro organism. Colloids Surf B Biointerfaces. 2020;185: 110627.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Assa F, Jafarizadeh-Malmiri H, Ajamein H, Vaghari H, Anarjan N, Ahmadi O, et al. Chitosan magnetic nanoparticles for drug supply techniques. Crit Rev Biotechnol. 2017;37:492–509.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin Y-C, Lou P-J, Younger T-H. Chitosan as an adjuvant-like substrate for dendritic cell tradition to boost antitumor results. Biomaterials. 2014;35:8867–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wen Z-S, Xu Y-L, Zou X-T, Xu Z-R. Chitosan nanoparticles act as an adjuvant to advertise each Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Medicine. 2011;9:1038–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carroll EC, Jin L, Mori A, Muñoz-Wolf N, Oleszycka E, Moran HBT, et al. The vaccine adjuvant chitosan promotes mobile immunity by way of DNA sensor cGAS-STING-dependent induction of kind I interferons. Immunity. 2016;44:597–608.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi G-N, Zhang C-N, Xu R, Niu J-F, Track H-J, Zhang X-Y, et al. Enhanced antitumor immunity by concentrating on dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials. 2017;113:191–202.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic nanotechnology towards customized vaccines. Adv Mater. 2020;32: e1901255.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Pattenden LK, Middelberg APJ, Niebert M, Lipin DI. In the direction of the preparative and large-scale precision manufacture of virus-like particles. Tendencies Biotechnol. 2005;23:523–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Main findings and up to date advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grgacic EVL, Anderson DA. Virus-like particles: passport to immune recognition. Strategies. 2006;40:60–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Donaldson B, Lateef Z, Walker GF, Younger SL, Ward VK. Virus-like particle vaccines: immunology and formulation for scientific translation. Professional Rev Vaccines. 2018;17:833–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mohsen MO, Speiser DE, Knuth A, Bachmann MF. Virus-like particles for vaccination towards most cancers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1579.

    CAS 
    PubMed 

    Google Scholar
     

  • Evtushenko EA, Ryabchevskaya EM, Nikitin NA, Atabekov JG, Karpova OV. Plant virus particles with numerous shapes as potential adjuvants. Sci Rep. 2020;10:10365.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lebel M-È, Chartrand Okay, Leclerc D, Lamarre A. Plant viruses as nanoparticle-based vaccines and adjuvants. Vaccines. 2015;3:620–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Albakri MM, Veliz FA, Fiering SN, Steinmetz NF, Sieg SF. Endosomal toll-like receptors play a key function in activation of main human monocytes by cowpea mosaic virus. Immunology. 2020;159:183–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lebel M-È, Langlois M-P, Daudelin J-F, Tarrab E, Savard P, Leclerc D, et al. Complement part 3 regulates IFN-α manufacturing by plasmacytoid dendritic cells following TLR7 activation by a plant virus-like nanoparticle. J Immunol. 2017;198:292–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang C, Beiss V, Steinmetz NF. Cowpea mosaic virus nanoparticles and empty virus-like particles present distinct however overlapping immunostimulatory properties. J Virol. 2019. https://doi.org/10.1128/JVI.00129-19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla S, Wang C, Beiss V, Steinmetz NF. Antibody response towards cowpea mosaic viral nanoparticles improves vaccine efficacy in ovarian most cancers. ACS Nano. 2020;14:2994–3003.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee KL, Murray AA, Le DHT, Sheen MR, Shukla S, Commandeur U, et al. Mixture of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response. Nano Lett. 2017;17:4019–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McCormick AA, Corbo TA, Wykoff-Clary S, Palmer KE, Pogue GP. Chemical conjugate TMV-peptide bivalent fusion vaccines enhance mobile immunity and tumor safety. Bioconjug Chem. 2006;17:1330–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lebel M-È, Chartrand Okay, Tarrab E, Savard P, Leclerc D, Lamarre A. Potentiating most cancers immunotherapy utilizing papaya mosaic virus-derived nanoparticles. Nano Lett. 2016;16:1826–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mao C, Beiss V, Fields J, Steinmetz NF, Fiering S. Cowpea mosaic virus stimulates antitumor immunity by recognition by a number of MYD88-dependent toll-like receptors. Biomaterials. 2021;275: 120914.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krishnan L, Dicaire CJ, Patel GB, Sprott GD. Archaeosome vaccine adjuvants induce sturdy humoral, cell-mediated, and reminiscence responses: comparability to traditional liposomes and alum. Infect Immun. 2000;68:54–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krishnan L, Unhappy S, Patel GB, Sprott GD. The potent adjuvant exercise of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo. J Immunol. 2001;166:1885–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krishnan L, Sprott GD. Archaeosome adjuvants: immunological capabilities and mechanism(s) of motion. Vaccine. 2008;26:2043–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krishnan L, Unhappy S, Patel GB, Sprott GD. Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein within the absence of interleukin 12 and shield towards tumor problem. Most cancers Res. 2003;63:2526–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Rudra JS, Tian YF, Jung JP, Collier JH. A self-assembling peptide appearing as an immune adjuvant. Proc Natl Acad Sci USA. 2010;107:622–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang Z-H, Shi L, Ma J-W, Solar Z-Y, Cai H, Chen Y-X, et al. A very artificial, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for most cancers remedy. J Am Chem Soc. 2012;134:8730–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li S, Zhang Q, Bai H, Huang W, Shu C, Ye C, et al. Self-assembled nanofibers elicit potent HPV16 E7-specific mobile immunity and abolish established TC-1 graft tumor. Int J Nanomed. 2019;14:8209–19.

    CAS 
    Article 

    Google Scholar
     

  • Wu Y, Kelly SH, Sanchez-Perez L, Sampson JH, Collier JH. Comparative examine of α-helical and β-sheet self-assembled peptide nanofiber vaccine platforms: affect of built-in T-cell epitopes. Biomater Sci. 2020;8:3522–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kang Z, Lee S-T. Carbon dots: advances in nanocarbon purposes. Nanoscale. 2019;11:19214–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luo L, Liu C, He T, Zeng L, Xing J, Xia Y, et al. Engineered fluorescent carbon dots as promising immune adjuvants to effectively improve most cancers immunotherapy. Nanoscale. 2018;10:22035–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, Donthireddy L, et al. Lipid our bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in most cancers. Nat Commun. 2017;8:2122.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: placing innate immunity to work. Immunity. 2010;33:492–503.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-00806-7.

    Article 

    Google Scholar
     

  • Hirai T, Yoshioka Y, Takahashi H, Ichihashi Okay-I, Yoshida T, Tochigi S, et al. Amorphous silica nanoparticles improve cross-presentation in murine dendritic cells. Biochem Biophys Res Commun. 2012;427:553–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carr A, Rodríguez E, Arango MDC, Camacho R, Osorio M, Gabri M, et al. Immunotherapy of superior breast most cancers with a heterophilic ganglioside (NeuGcGM3) most cancers vaccine. J Clin Oncol. 2003;21:1015–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Caballero I, Aira LE, Lavastida A, Popa X, Rivero J, González J, et al. Security and immunogenicity of a human epidermal progress issue receptor 1 (HER1)-based vaccine in prostate castration-resistant carcinoma sufferers: a dose-escalation part i examine trial. Entrance Pharmacol. 2017;8:263.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Morera Y, Sánchez J, Bequet-Romero M, Selman-Housein Okay-H, de la Torre A, Hernández-Bernal F, et al. Particular humoral and mobile immune responses in most cancers sufferers present process power immunization with a VEGF-based therapeutic vaccine. Vaccine. 2017;35:3582–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solares AM, Baladron I, Ramos T, Valenzuela C, Borbon Z, Fanjull S, et al. Security and immunogenicity of a human papillomavirus peptide vaccine (CIGB-228) in girls with high-grade cervical intraepithelial neoplasia: first-in-human, Proof-of-Idea Trial. ISRN Obstet Gynecol. 2011;2011: 292951.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Junco JA, Rodríguez R, Fuentes F, Baladrón I, Castro MD, Calzada L, et al. Security and therapeutic profile of a GnRH-based vaccine candidate directed to prostate most cancers. A ten-year follow-up of sufferers vaccinated with heberprovac. Entrance Oncol. 2019;9:49.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mamo T, Poland GA. Nanovaccinology: the following technology of vaccines meets twenty first century supplies science and engineering. Vaccine. 2012;30:6609–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saung MT, Ke X, Howard GP, Zheng L, Mao H-Q. Particulate provider techniques as adjuvants for most cancers vaccines. Biomater Sci. 2019;7:4873–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aiga T, Manabe Y, Ito Okay, Chang T-C, Kabayama Okay, Ohshima S, et al. Immunological analysis of co-assembling a lipidated peptide antigen and lipophilic adjuvants: self-adjuvanting anti-breast-cancer vaccine candidates. Angew Chem Int Ed Engl. 2020;59:17705–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang X, Li X, Ito A, Sogo Y, Watanabe Y, Hashimoto Okay, et al. Synergistic results of stellated fibrous mesoporous silica and artificial dsRNA analogues for most cancers immunotherapy. Chem Commun. 2018;54:1057–60.

    CAS 
    Article 

    Google Scholar
     

  • Yan S, Rolfe BE, Zhang B, Mohammed YH, Gu W, Xu ZP. Polarized immune responses modulated by layered double hydroxides nanoparticle conjugated with CpG. Biomaterials. 2014;35:9508–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu Y, Ma S, Zhao J, Chen H, Si X, Huang Z, et al. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials. 2022;284: 121489.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Batista-Duharte A, Martínez DT, Carlos IZ. Efficacy and security of immunological adjuvants. The place is the cut-off? Biomed Pharmacother. 2018;105:616–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi Y, Lammers T. Combining nanomedicine and immunotherapy. Acc Chem Res. 2019;52:1543–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hannon G, Lysaght J, Liptrott NJ, Prina-Mello A. Immunotoxicity issues for subsequent technology most cancers nanomedicines. Adv Sci. 2019;6:1900133.

    CAS 
    Article 

    Google Scholar
     

  • Tian M, Hua Z, Hong S, Zhang Z, Liu C, Lin L, et al. B cell-intrinsic MyD88 signaling promotes preliminary cell proliferation and differentiation to boost the germinal heart response to a virus-like particle. J Immunol. 2018;200:937–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in most cancers. Nat Rev Most cancers. 2014;14:159–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Riedel A, Shorthouse D, Haas L, Corridor BA, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gillot L, Baudin L, Rouaud L, Kridelka F, Noël A. The pre-metastatic area of interest in lymph nodes: formation and traits. Cell Mol Life Sci. 2021;78:5987–6002.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leary N, Walser S, He Y, Cousin N, Pereira P, Gallo A, et al. Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J Extracell Vesicles. 2022;11: e12197.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cai T, Liu H, Zhang S, Hu J, Zhang L. Supply of nanovaccine in the direction of lymphoid organs: latest methods in enhancing most cancers immunotherapy. J Nanobiotechnol. 2021;19:389.

    CAS 
    Article 

    Google Scholar
     

  • Zhang Y-N, Poon W, Sefton E, Chan WCW. Suppressing subcapsular sinus macrophages enhances transport of nanovaccines to lymph node follicles for strong humoral immunity. ACS Nano. 2020;14:9478–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal management of vaccine responses. Nat Rev Mater. 2021. https://doi.org/10.1038/s41578-021-00372-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments