Thursday, December 1, 2022
HomeNanotechnologyTwo-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds selling diabetic wound therapeutic...

Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds selling diabetic wound therapeutic | Journal of Nanobiotechnology


  • Hosseini M, Shafiee A. Engineering bioactive scaffolds for pores and skin regeneration. Small. 2021;17:e2101384.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound restore and regeneration. Nature. 2008;453:314–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bardill J R, Laughter M R, Stager M, Liechty Okay W, Krebs M D, Zgheib C. Topical gel-based biomaterials for the remedy of diabetic foot ulcers. Acta Biomater. 2022;138:73–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guan Y, Niu H, Liu Z, Dang Y, Shen J, Zayed M, Ma L, Guan J. Sustained oxygenation accelerates diabetic wound therapeutic by selling epithelialization and angiogenesis and lowering irritation. Sci Adv. 2021;7:eabj0153.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liang Y, He J, Guo B. Useful hydrogels as wound dressing to boost wound therapeutic. ACS Nano. 2021;15:12687–722.

    CAS 
    Article 

    Google Scholar
     

  • Tallapaneni V, Kalaivani C, Pamu D, Mude L, Singh SK, Karri V. Acellular scaffolds as revolutionary biomaterial platforms for the administration of diabetic wounds. Tissue Eng Regen Med. 2021;18:713–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gaskell EE, Hamilton AR. Antimicrobial clay-based supplies for wound care. Future Med Chem. 2014;6:641–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Santos AC, Pereira I, Reis S, Veiga F, Saleh M, Lvov Y. Biomedical potential of clay nanotube formulations and their toxicity evaluation. Professional Opin Drug Deliv. 2019;16:1169–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ji X, Ge L, Liu C, Tang Z, Xiao Y, Chen W, Lei Z, Gao W, Blake S, De D, Shi B, Zeng X, Kong N, Zhang X, Tao W. Capturing practical two-dimensional nanosheets from sandwich-structure vermiculite for most cancers theranostics. Nat Commun. 2021;12:1124.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang X, Wang A, Liu X, Luo J. Dendrites in lithium steel anodes: suppression, regulation, and elimination. Acc Chem Res. 2019;52:3223–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yin X, Zhang L, Harigai M, Wang X, Ning S, Nakase M, Koma Y, Inaba Y, Takeshita Okay. Hydrothermal-treatment desorption of cesium from clay minerals: the roles of natural acids and implications for soil decontamination. Water Res. 2020;177:115804.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Janica I, Del Buffa S, Mikolajczak A, Eredia M, Pakulski D, Ciesielski A, Samori P. Thermal insulation with 2D supplies: liquid part exfoliated vermiculite practical nanosheets. Nanoscale. 2018;10:23182–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shao JJ, Raidongia Okay, Koltonow AR, Huang J. Self-assembled two-dimensional nanofluidic proton channels with excessive thermal stability. Nat Commun. 2015;6:7602.

    PubMed 
    Article 

    Google Scholar
     

  • Pan XF, Gao HL, Lu Y, Wu CY, Wu YD, Wang XY, Pan ZQ, Dong L, Tune YH, Cong HP, Yu SH. Remodeling floor mica into high-performance biomimetic polymeric mica movie. Nat Commun. 2018;9:2974.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Alekseeva T, Alekseev A, Xu RK, Zhao AZ, Kalinin P. Impact of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in jap China. Environ Geochem Well being. 2011;33:137–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu L, Shang X, Chen H, Xiao L, Zhu Y, Fan J. A tightly-bonded and versatile mesoporous zeolite-cotton hybrid hemostat. Nat Commun. 2019;10:1932.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Zhang Y, Zhang A, Ling C, Sheng R, Li X, Yao Q, Chen J. Enzymatically crosslinked silk-nanosilicate strengthened hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. Mater Sci Eng C. 2021;127:112215.

    CAS 
    Article 

    Google Scholar
     

  • Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new ideas, supplies, and functions. Acc Chem Res. 2017;50:1976–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xiao Y, Peng J, Liu Q, Chen L, Shi Okay, Han R, Yang Q, Zhong L, Zha R, Qu Y, Qian Z. Ultrasmall [email protected] nanoparticles with gentle photothermal conversion synergistically induce MSCs-differentiated fibroblast and enhance pores and skin regeneration. Theranostics. 2020;10:1500–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cui C, Solar S, Wu S, Chen S, Ma J, Zhou F. Electrospun chitosan nanofibers for wound therapeutic utility. Eng Regen. 2021;2:82–90.


    Google Scholar
     

  • Zheng Y, Wu Y, Zhou Y, Wu J, Wang X, Qu Y, Wang Y, Zhang Y, Yu Q. Photothermally activated electrospun nanofiber mats for high-efficiency surface-mediated gene transfection. ACS Appl Mater Interfaces. 2020;12:7905–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen L, Zhang L, Zhang H, Solar X, Liu D, Zhang J, Zhang Y, Cheng L, Santos HA, Cui W. Programmable immune activating electrospun fibers for pores and skin regeneration. Bioact Mater. 2021;6:3218–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abadehie FS, Dehkordi AH, Zafari M, Bagheri M, Yousefiasl S, Pourmotabed S, Mahmoodnia L, Validi M, Ashrafizadeh M, Zare EN. Lawsone-encapsulated chitosan/polyethylene oxide nanofibrous mat as a possible antibacterial biobased wound dressing. Eng Regen. 2021;2:219–26.


    Google Scholar
     

  • Wang Z, Qian Y, Li L, Pan L, Njunge LW, Dong L, Yang L. Analysis of emulsion electrospun polycaprolactone/hyaluronan/epidermal development issue nanofibrous scaffolds for wound therapeutic. J Biomater Appl. 2016;30:686–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Choi JS, Leong KW, Yoo HS. In vivo wound therapeutic of diabetic ulcers utilizing electrospun nanofibers immobilized with human epidermal development issue (EGF). Biomaterials. 2008;29:587–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Garrudo FFF, Mikael PE, Rodrigues CAV, Udangawa RW, Paradiso P, Chapman CA, Hoffman P, Colaco R, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC. Polyaniline-polycaprolactone fibers for neural functions: electroconductivity enhanced by pseudo-doping. Mater Sci Eng C. 2021;120:111680.

    CAS 
    Article 

    Google Scholar
     

  • Fu J, Wang M, De Vlaminck I, Wang Y. Thick PCL fibers enhancing host reworking of PGS-PCL composite grafts implanted in rat frequent carotid arteries. Small. 2020;16:e2004133.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Feiner R, Wertheim L, Gazit D, Kalish O, Mishal G, Shapira A, Dvir T. A stretchable and versatile cardiac tissue-electronics hybrid enabling a number of drug launch, sensing, and stimulation. Small. 2019;15:e1805526.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Xiong R, Hua D, Van Hoeck J, Berdecka D, Leger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, Goetgeluk G, Pille M, Aalders J, Belza J, Van Acker T, Bolea-Fernandez E, Si T, Vanhaecke F, De Vos WH, Vandekerckhove B, van Hengel J, Raemdonck Okay, Huang C, De Smedt SC, Braeckmans Okay. Photothermal nanofibres allow secure engineering of therapeutic cells. Nat Nanotechnol. 2021;16:1281–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma Okay, Liao C, Huang L, Liang R, Zhao J, Zheng L, Su W. Electrospun PCL/MoS2 nanofiber membranes mixed with NIR-triggered photothermal remedy to speed up bone regeneration. Small. 2021;17:e2104747.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Su N, Gao PL, Wang Okay, Wang JY, Zhong Y, Luo Y. Fibrous scaffolds potentiate the paracrine perform of mesenchymal stem cells: a brand new dimension in cell–materials interplay. Biomaterials. 2017;141:74–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dashnyam Okay, Jin GZ, Kim JH, Perez R, Jang JH, Kim HW. Selling angiogenesis with mesoporous microcarriers by means of a synergistic motion of delivered silicon ion and VEGF. Biomaterials. 2017;116:145–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mace KA, Yu DH, Paydar KZ, Boudreau N, Younger DM. Sustained expression of Hif-1alpha within the diabetic atmosphere promotes angiogenesis and cutaneous wound restore. Wound Restore Regen. 2007;15:636–45.

    PubMed 
    Article 

    Google Scholar
     

  • Ahluwalia A, Tarnawski AS. Essential function of hypoxia sensor-HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue harm therapeutic. Curr Med Chem. 2012;19:90–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qing M, Gorlach A, Schumacher Okay, Woltje M, Vazquez-Jimenez JF, Hess J, Seghaye MC. The hypoxia-inducible issue HIF-1 promotes intramyocardial expression of VEGF in infants with congenital cardiac defects. Fundamental Res Cardiol. 2007;102:224–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang X, Malkovskiy AV, Tian W, Sung YK, Solar W, Hsu JL, Manickam S, Wagh D, Joubert LM, Semenza GL, Rajadas J, Nicolls MR. Promotion of airway anastomotic microvascular regeneration and alleviation of airway ischemia by deferoxamine nanoparticles. Biomaterials. 2014;35:803–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li G, Ko CN, Li D, Yang C, Wang W, Yang GJ, Di Primo C, Wong VKW, Xiang Y, Lin L, Ma DL, Leung CH. A small molecule HIF-1alpha stabilizer that accelerates diabetic wound therapeutic. Nat Commun. 2021;12:3363.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shen T, Han T, Zhao Q, Ding F, Mao S, Gao M. Environment friendly elimination of mefenamic acid and ibuprofen on organo-Vts with a quinoline-containing gemini surfactant: adsorption research and mannequin calculations. Chemosphere. 2022;295:133846.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fadaie M, Mirzaei E. Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile energy and mobile conduct. Nanomed J. 2018;5:77–89.

    CAS 

    Google Scholar
     

  • Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering functions. Biomacromolecules. 2005;6:1961–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li H, Xue Okay, Kong N, Liu Okay, Chang J. Silicate bioceramics enhanced vascularization and osteogenesis by means of stimulating interactions between endothelia cells and bone marrow stromal cells. Biomaterials. 2014;35:3803–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma W, Ma H, Qiu P, Zhang H, Yang Z, Ma B, Chang J, Shi X, Wu C. Sprayable beta-FeSi2 composite hydrogel for transportable pores and skin tumor remedy and wound therapeutic. Biomaterials. 2021;279:121225.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cakin MC, Ozdemir B, Kaya-Dagistanli F, Arkan H, Bahtiyar N, Anapali M, Akbas F, Onaran I. Analysis of the in vivo wound therapeutic potential of the lipid fraction from activated platelet-rich plasma. Platelets. 2020;31:513–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu J, Chen A, Zhou Y, Zheng S, Yang Y, An Y, Xu Okay, He H, Kang J, Luckanagul J A, Xian M, Xiao J, Wang Q. Novel H2S-releasing hydrogel for wound restore through in situ polarization of M2 macrophages. Biomaterials. 2019;222:119398.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Doostmohammadi M, Forootanfar H, Ramakrishna S. Regenerative medication and drug supply: progress through electrospun biomaterials. Mater Sci Eng C. 2020;109:110521.

    CAS 
    Article 

    Google Scholar
     

  • Augustine R, Rehman SRU, Ahmed R, Zahid AA, Sharifi M, Falahati M, Hasan A. Electrospun chitosan membranes containing bioactive and therapeutic brokers for enhanced wound therapeutic. Int J Biol Macromol. 2020;156:153–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rafique M, Wei T, Solar Q, Midgley A C, Huang Z, Wang T, Shafiq M, Zhi D, Si J, Yan H, Kong D, Wang Okay. The impact of hypoxia-mimicking responses on enhancing the regeneration of synthetic vascular grafts. Biomaterials. 2021;271:120746.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sandri G, Faccendini A, Longo M, Ruggeri M, Rossi S, Bonferoni M C, Miele D, Prina-Mello A, Aguzzi C, Viseras C, Ferrari F. Halloysite- and montmorillonite-loaded scaffolds as enhancers of continual wound therapeutic. Pharmaceutics. 2020;12:179.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Web page DJ, Clarkin CE, Mani R, Khan NA, Dawson JI, Evans ND. Injectable nanoclay gels for angiogenesis. Acta Biomater. 2019;100:378–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Delyanee M, Solouk A, Akbari S, Daliri MJ. Hemostatic electrospun nanocomposite containing poly(lactic acid)/halloysite nanotube functionalized by poly(amidoamine) dendrimer for wound therapeutic utility: in vitro and in vivo assays. Macromol Biosci. 2021;22:2100313.

    Article 
    CAS 

    Google Scholar
     

  • Nyame TT, Chiang HA, Leavitt T, Ozambela M, Orgill DP. Tissue-engineered pores and skin substitutes. Plast Reconstr Surg. 2015;136:1379–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hou Y, Li J, Guan S, Witte F. The therapeutic potential of MSC-EVs as a bioactive materials for wound therapeutic. Eng Regen. 2022. https://doi.org/10.1016/j.engreg.2021.11.003.

    Article 

    Google Scholar
     

  • el-Ghalbzouri A, Gibbs S, Lamme E, Van Blitterswijk CA, Ponec M. Impact of fibroblasts on epidermal regeneration. Br J Dermatol. 2002;147:230–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang Y, Huang Okay, Wang M, Wang Q, Chang H, Liang Y, Wang Q, Zhao J, Tang T, Yang S. Ubiquitination move repressors: enhancing wound therapeutic of infectious diabetic ulcers by means of stabilization of polyubiquitinated hypoxia-inducible factor-1alpha by theranostic nitric oxide nanogenerators. Adv Mater. 2021;33:e2103593.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Maier JA, Bernardini D, Rayssiguier Y, Mazur A. Excessive concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim Biophys Acta Mol Foundation Dis. 2004;1689:6–12.

    CAS 
    Article 

    Google Scholar
     

  • Latifi N, Asgari M, Vali H, Mongeau L. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential smooth tissue engineering functions. Sci Rep. 2018;8:1047.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wu JJ, Weis MA, Kim LS, Eyre DR. Sort III collagen, a fibril community modifier in articular cartilage. J Biol Chem. 2010;285:18537–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brisson BK, Stewart DC, Burgwin C, Chenoweth D, Wells RG, Adams SL, Volk SW. Cysteine-rich area of sort III collagen N-propeptide inhibits fibroblast activation by attenuating TGFβ signaling. Matrix Biol. 2022;109:19–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Botusan IR, Sunkari VG, Savu O, Catrina AI, Grunler J, Lindberg S, Pereira T, Yla-Herttuala S, Poellinger L, Brismar Okay, Catrina SB. Stabilization of HIF-1alpha is vital to enhance wound therapeutic in diabetic mice. Proc Natl Acad Sci USA. 2008;105:19426–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients by means of HIF-1 induction of SDF-1.  Nat Med. 2004;10:858–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK. Predominant function of endothelial nitric oxide synthase in vascular endothelial development factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA. 2001;98:2604–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Broughton G, Janis JE, Attinger CE. The essential science of wound therapeutic. Plast Reconstr Surg. 2006;117:12S-34S.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peng Y, Wu S, Li Y, Crane JL. Sort H blood vessels in bone modeling and reworking. Theranostics. 2020;10:426–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhai Y, Schilling Okay, Wang T, El Khatib M, Vinogradov S, Brown E B, Zhang X. Spatiotemporal blood vessel specification on the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials. 2021;276:121041.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu C, Chu C, Liu L, Wang C, Jin S, Yang R, Rung S, Li J, Qu Y, Man Y. Dissecting the microenvironment round biosynthetic scaffolds in murine pores and skin wound therapeutic. Sci Adv. 2021;7:eabf0787.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren X, Han Y, Wang J, Jiang Y, Yi Z, Xu H, Ke Q. An aligned porous electrospun fibrous membrane with managed drug supply—an environment friendly technique to speed up diabetic wound therapeutic with improved angiogenesis. Acta Biomater. 2018;70:140–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Okesola BO, Mendoza-Martinez AK, Cidonio G, Derkus B, Boccorh DK, Osuna de la Peña D, Elsharkawy S, Wu Y, Dawson JI, Wark AW, Knani D, Adams DJ, Oreffo ROC, Mata A. De novo design of practical coassembling natural–inorganic hydrogels for hierarchical mineralization and neovascularization. ACS Nano. 2021;15:11202–17.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments